我用的是ImageMagickWand的接口,因为这接口比Core接口更上层,所以官方文档推荐用. 抽取整个图像文件字节数据: http://www.imagemagick.org/discourse-server/viewtopic.php?f=1&t=20664 抽取图像像素的字节数据: http://www.imagemagick.org/discourse-server/viewtopic.php?f=6&t=12135 ImageMagick附带的convert工具命令使用: c…
Codrops 分享了一个有趣的颜色提取实验.这个想法是创建图像的调色板,既有图像本身的潜移默化的影响,也有一些花哨的颜色延伸.通过使用 Vibrant.js 来提取图像中的颜色,并通过 CSS 过滤器将图像转换为黑色和白色版本,还有一个“幕布”滑动的效果. 在线演示      源码下载 您可能感兴趣的相关文章 网站开发中很有用的 jQuery 效果[附源码] 分享35个让人惊讶的 CSS3 动画效果演示 十分惊艳的8个 HTML5 & JavaScript 特效 Web 开发中很实用的10个效…
基于matlab工具箱提取图像中的多目标特征(代码如下): 代码前面部分为提取图像的边界信息,调用了后面的遍历函数Pixel_Search,函数实现方法见后~ %%ROI Testing close all; clear all; clc; I=imread('Test.png'); I=rgb2gray(I); I=I(:,:); [m,n]=size(I); I_BW=I; :m :n I_BW(Row1,Clo1)=; else I_BW(Row1,Clo1)=; end end end…
对于即将到来的人工智能时代,作为一个有理想有追求的程序员,不懂深度学习(Deep Learning)这个超热的领域,会不会感觉马上就out了?作为机器学习的一个分支,深度学习同样需要计算机获得强大的学习能力,那么问题来了,我们究竟要计算机学习什么东西?答案当然是图像特征了.将一张图像看做是一个个像素值组成的矩阵,那么对图像的分析就是对矩阵的数字进行分析,而图像的特征,就隐藏在这些数字规律中.深度学习对外推荐自己的一个很重要的点——深度学习能够自动提取特征.本文主要介绍卷积层提取特征的原理过程,文…
VGG16提取图像特征 (torch7) VGG16 loadcaffe torch7 下载pretrained model,保存到当前目录下 th> caffemodel_url = 'http://www.robots.ox.ac.uk/~vgg/software/very_deep/caffe/VGG_ILSVRC_16_layers.caffemodel'  th> proto_url='https://gist.github.com/ksimonyan/211839e770f7b53…
从ROS bag文件中提取图像 创建launch文件,如下: export.launch <launch> <node pkg="rosbag" type="play" name="rosbag" args="-d 2 $(find image_view)/test.bag"/> <node name="extract" pkg="image_view" t…
雷霄骅分类专栏: FFMPEG FFmpeg 本文链接:https://blog.csdn.net/leixiaohua1020/article/details/14215391 FFMPEG中的swscale提供了视频原始数据(YUV420,YUV422,YUV444,RGB24...)之间的转换,分辨率变换等操作,使用起来十分方便,在这里记录一下它的用法. swscale主要用于在2个AVFrame之间进行转换. 下面来看一个视频解码的简单例子,这个程序完成了对"北京移动开发者大会茶歇视频2…
利用edge()函数提取图像轮廓,绘制出对象的边界和提取边界坐标信息,matlab实现代码如下: close all;clear all;clc; % 提取图像轮廓,提取图像边缘 I = imread('yifu.jpg'); c = im2bw(I,graythresh(I)); figure; subplot(131);imshow(I); c = flipud(c); %实现矩阵c上下翻转 b = edge(c,'canny'); [u,v] = find(b); %返回边界矩阵b中非零元…
上一节中,我们采用了一个自定义的网络结构,从头开始训练猫狗大战分类器,最终在使用图像增强的方式下得到了82%的验证准确率.但是,想要将深度学习应用于小型图像数据集,通常不会贸然采用复杂网络并且从头开始训练(training from scratch),因为训练代价高,且很难避免过拟合问题.相对的,通常会采用一种更高效的方法--使用预训练网络. 预训练网络的使用通常有两种方式,一种是利用预训练网络简单提取图像的特征,之后可能会利用这些特征进行其他操作(比如和文本信息结合以用于image capti…
基于知乎上的一个答案.问题如下: 也就是在一张照片里,已知有个长方形的物体,但是经过了透视投影,已经不再是规则的长方形,那么如何提取这个图形里的内容呢?这是个很常见的场景,比如在博物馆里看到一幅很喜欢的画,用手机找了下来,可是回家一看歪歪斜斜,脑补原画内容又觉得不对,那么就需要算法辅助来从原图里提取原来的内容了.不妨把应用的场景分为以下: 纸张四角的坐标(图中红点)已知的情况 也就是上面的左图中4个红点是可以准确获取,比如手动标注,那么就简单了:用OpenCV的Perspective Trans…