Numpy 基础运算】的更多相关文章

numpy的几种运算 1.一维矩阵运算 >>> import numpy as np >>> a=np.array([10,20,30,40]) # array([10, 20, 30, 40]) >>> b=np.arange(4) # array([0, 1, 2, 3]) >>> c=a-b #两个矩阵的减法 >>> print(c) [10 19 28 37] >>> c=a+b #加法 &…
# -*- encoding:utf-8 -*- # Copyright (c) 2015 Shiye Inc. # All rights reserved. # # Author: ldq <liangduanqi@shiyejinrong.com> # Date: 2019/2/11 14:57 import numpy as np a = np.arange(2, 14).reshape(3, 4) ''' reshape矩阵变维 [[ 2 3 4 5] [ 6 7 8 9] [10 1…
# -*- encoding:utf-8 -*- # Copyright (c) 2015 Shiye Inc. # All rights reserved. # # Author: ldq <liangduanqi@shiyejinrong.com> # Date: 2019/2/11 13:41 import numpy as np a = np.array([0, np.pi/2, np.pi, np.pi/3, np.pi/4]) b = np.arange(4, 8, 2, np.f…
numpy的基础运算中还有很多运算,我们这里再记录一些. 最小/大值索引 前面一篇博文中我们讲述过如何获得数组中的最小值,这里我们获得最小/大值的索引值,也就是这个最小/大值在整个数组中位于第几位. import numpy as np a = np.array([[10, 30, 15], [20, 5, 25]]) print("a=") print(a) print("最小值索引:", a.argmin()) print("最大值索引:",…
概念理解 索引即通过一个无符号整数值获取数组里的值. 切片即对数组里某个片段的描述. 一维数组 一维数组的索引 一维数组的索引和Python列表的功能类似: 一维数组的切片 一维数组的切片语法格式为array[index1:index2],意思是从index1索引位置开始,到index2索引(不包括index2)位置结束的一段数组.例如: 当把一个值赋值为一个切片时,该值会作用于此数组片段里每一个元素,例如: 二维数组 二维数组的索引 当以一维数组的索引方式访问一个二维数组的时候,获取的元素不在…
http://www.cnblogs.com/batteryhp/p/5000104.html 第四章 Numpy基础:数组和矢量计算 第一部分:numpy的ndarray:一种多维数组对象 实话说,用numpy的主要目的在于应用矢量化运算.Numpy并没有多么高级的数据分析功能,理解Numpy和面向数组的计算能有助于理解后面的pandas.按照课本的说法,作者关心的功能主要集中于: 用于数据整理和清理.子集构造和过滤.转换等快速的矢量化运算 常用的数组解法,如排序.唯一化.集合运算等 高效的描…
利用Python进行数据分析--Numpy基础:数组和矢量计算 ndarry,一个具有矢量运算和复杂广播能力快速节省空间的多维数组 对整组数据进行快速运算的标准数学函数,无需for-loop 用于读写磁盘数据的工具以及用于操作内存映射文件的工具? 线性代数.随机数生成以及傅里叶变换功能 用于集成C/C++等代码的工具 一.ndarry:一种多维数组对象 1.创建ndarry #一维 In [5]: data = [1,2,3] In [6]: import numpy as np In [7]:…
Numpy 基础操作¶ 以numpy的基本数据例子来学习numpy基本数据处理方法 主要内容有: 创建数组 数组维度转换 数据选区和切片 数组数据计算 随机数 数据合并 数据统计计算 In [1]: import numpy as np   创建一维数组¶ In [2]: data = np.arange(15) data Out[2]: array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14])   reshape进行维度转换¶ dat…
Numpy 基础 参考https://www.jianshu.com/p/83c8ef18a1e8 import numpy as np 简单创建数组 # 创建简单列表 a = [1, 2, 3, 4] # 将列表转换为数组 b = np.array(a) print(a, "\t", b) print("\n数组元素个数:\t",b.size) print("数组形状:\t", b.shape) print("数组维度:\t"…
来源于:https://github.com/HanXiaoyang/python-and-numpy-tutorial/blob/master/python-numpy-tutorial.ipynb python与numpy基础   寒小阳(2016年6月)   Python介绍   如果你问我没有编程基础,想学习一门语言,我一定会首推给你Python类似伪代码的书写方式,让你能够集中精力去解决问题,而不是花费大量的时间在开发和debug上同时得益于Numpy/Scipy这样的科学计算库,使得…