OpenCV——SIFT特征检测与匹配】的更多相关文章

SIFT特征和SURF特征比较 比较项目 SIFT SURF 尺度空间极值检测 使用高斯滤波器,根据不同尺度的高斯差(DOG)图像寻找局部极值 使用方形滤波器,利用海森矩阵的行列式值检测极值,并利用积分图加速运算 关键点定位 通过邻近信息插补来定位 与SIFT类似 方向定位 通过计算关键点局部邻域的方向直方图,寻找直方图中最大值的方向作为关键点的主方向 通过计算特征点周围像素点x,y方向的哈尔小波变换,将x.y方向小波变换的和向量的最大值作为特征点方向 特征描述子 是关键点邻域高斯图像梯度方向直…
检测并绘制特征点: #include <opencv2/opencv.hpp> #include <opencv2/xfeatures2d.hpp> #include <iostream> using namespace cv; using namespace cv::xfeatures2d; using namespace std; int main(int argc, char** argv) { Mat src = imread("test.jpg&qu…
原文链接:https://mp.weixin.qq.com/s/S4b1OGjRWX1kktefyHAo8A #include <opencv2/opencv.hpp> #include <opencv2/xfeatures2d.hpp> #include <iostream> using namespace cv; using namespace cv::xfeatures2d; using namespace std; int main(int argc, char…
SURF原理详解:https://wenku.baidu.com/view/2f1e4d8ef705cc1754270945.html SURF算法工作原理 选择图像中的POI(Points of interest) Hessian Matrix 在不同的尺度空间发现关键点,非最大信号压制 发现特征点方法.旋转不变性要求 生成特征向量 SURF构造函数介绍 C++:  SURF::SURF( double hessianThreshold, --阈值检测器使用Hessian的关键点,默认值在 3…
SIFT特征检测介绍 SIFT(Scale-Invariant Feature Transform)特征检测关键特性: -建立尺度空间,寻找极值 -关键点定位(寻找关键点准确位置与删除弱边缘) -关键点方向指定 -关键点描述子 关键点定位 我们在像素级别获得了极值点的位置,但是更准确的 值应该在亚像素位置,如何得到 – 这个过程称为关键 点(准确/精准)定位 删除弱边缘- 通过Hassian 矩阵特征值实现,小于阈值 自动舍 建立尺度空间,寻找极值.工作原理 . 构建图像高斯金字塔,求取DOG,…
http://blog.sina.com.cn/s/blog_a6b913e30101dvrt.html 一.前提 安装Opencv,因该版本的SIFT是基于Opencv的. 下载SIFT源码,见Rob Hess的主页(别告诉我不懂英文不知道下载链接在哪,下那个Windows VC++的版本 sift-latest_win.zip). 其中有3个是解决方案文件夹:siftFeat.match和dspFeat,siftFeat工程是做SITF特征提取的,一般只会用到这个案例,match是利用SIF…
模板匹配是一种在图像中定位目标的方法,通过把输入图像在实际图像上逐像素点滑动,计算特征相似性,以此来判断当前滑块图像所在位置是目标图像的概率. 在Opencv中,模板匹配定义了6种相似性对比方式: CV_TM_SQDIFF 平方差匹配法:计算图像像素间的距离之和,最好的匹配是0,值越大,是目标的概率就越低.     CV_TM_CCORR 相关匹配法:一种乘法操作:数值从小到大,匹配概率越来越高.     CV_TM_CCOEFF 相关系数匹配法:从-1到1,匹配概率越来越高.     CV_T…
这几天学习SURF特征检测,直接看的视频和书本有点吃不消,现在是基本看懂了,如果写博客记录没有必要,因为网上都差不多,笔记都在书上了,以下是个人认为比较浅显易懂的文章,当然海有很多好文章我没看到. 看第一篇入门就可以,后面讲的不是很好: http://blog.csdn.net/jwh_bupt/article/details/7621681 harris:    http://www.cnblogs.com/ronny/p/4009425.html Harr:  http://blog.csd…
SIFT算法的过程实质是在不同尺度空间上查找特征点(关键点),用128维方向向量的方式对特征点进行描述,最后通过对比描述向量实现目标匹配. 概括起来主要有三大步骤: 1.提取关键点: 2.对关键点附加详细的信息(局部特征)也就是所谓的描述器: 3.通过两方特征点(附带上特征向量的关键点)的两两比较找出相互匹配的若干对特征点,建立物体间的对应关系. Opencv中Sift算子的特征提取是在SiftFeatureDetector类中的detect方法实现的. 特征点描述是在SiftDescripto…
AkAZE是KAZE的加速版 与SIFT,SUFR比较: 1.更加稳定 2.非线性尺度空间 3.AKAZE速度更加快 4.比较新的算法,只有Opencv新的版本才可以用 AKAZE局部匹配介绍 1.AOS构造尺度空间 2.Hessian矩阵特征点 3.方向指定基于一阶微分图像 4.描述子生成 特征点查找和绘制:把surf中的surf改成KAZE或AKAZE即可 #include <opencv2/opencv.hpp> #include <opencv2/features2d.hpp&g…