softmax函数python实现】的更多相关文章

import numpy as np def softmax(x): """ 对输入x的每一行计算softmax. 该函数对于输入是向量(将向量视为单独的行)或者矩阵(M x N)均适用. 代码利用softmax函数的性质: softmax(x) = softmax(x + c) 参数: x -- 一个N维向量,或者M x N维numpy矩阵. 返回值: x -- 在函数内部处理后的x """ orig_shape = x.shape # 根据输…
sigmoid 函数与 softmax 函数     1. sigmoid 函数       sigmoid 函数又称:logistic函数,逻辑斯谛函数.其几何形状即为一条sigmoid曲线. logistic的几何形状如下所示:     一个简单的Logistic函数可用下式表示: 逻辑斯谛回归(Logistic Regression,简称LR)作为一种对数线性模型(log-linear model)被广泛地应用于分类和回归场景中.此外,logistic函数也是神经网络最为常用的激活函数,即…
简单总结一下机器学习最常见的两个函数,一个是logistic函数,另一个是softmax函数,若有不足之处,希望大家可以帮忙指正.本文首先分别介绍logistic函数和softmax函数的定义和应用,然后针对两者的联系和区别进行了总结. 1. logistic函数 1.1 logistic函数定义 引用wiki百科的定义: A logistic function or logistic curve is a common "S" shape (sigmoid curve). 其实逻辑斯…
函数:Python的乐高积木 让编程改变世界 Change the world by program 相信大家小时候应该都玩过神奇的乐高积木,只要通过想象和创意,我们可以用它拼凑出很多神奇的东西. 随着我们学习的深入,我们编写的Python代码也日益增加且越来越复杂,所以我们需要找一个方法对这些复杂的代码进行重新组织,目的是为了使代码的逻辑显得更为简单和易懂,我们说了优秀的东西永远是经典的,而经典的东西永远是简单的,不是说复杂不好,是能够把复杂的东西简单化才能成为经典. 为了使得程序代码更为简单…
答案来自专栏:机器学习算法与自然语言处理 详解softmax函数以及相关求导过程 这几天学习了一下softmax激活函数,以及它的梯度求导过程,整理一下便于分享和交流. softmax函数 softmax用于多分类过程中,它将多个神经元的输出,映射到(0,1)区间内,可以看成概率来理解,从而来进行多分类! 假设我们有一个数组,V,Vi表示V中的第i个元素,那么这个元素的softmax值就是 <img src="https://pic3.zhimg.com/50/v2-39eca1f…
用于分类  softmax 函数 手写数据识别:…
一.softmax函数 softmax用于多分类过程中,它将多个神经元的输出,映射到(0,1)区间内,可以看成概率来理解,从而来进行多分类! 假设我们有一个数组,V,Vi表示V中的第i个元素,那么这个元素的softmax值就是 更形象的如下图表示: softmax直白来说就是将原来输出是3,1,-3通过softmax函数一作用,就映射成为(0,1)的值,而这些值的累和为1(满足概率的性质),那么我们就可以将它理解成概率,在最后选取输出结点的时候,我们就可以选取概率最大(也就是值对应最大的)结点,…
匿名函数 python定义一个函数通常使用def关键词,后面跟函数名,然后是注释.代码块等. def func(): '''注释''' print('from func') 这样就在全局命名空间定义了一个叫func的函数,func表示函数体的内存地址,因为func指向函数体内存地址,所以可以通过func来调用函数. 那么匿名函数呢?从名字就可看出,匿名.想想就有点像以前小时候的佚名一样,带点说不清楚的神秘色彩,现在想来之所以感觉神秘可能是因为那时候不认识''佚''这个字... 强调: 匿名函数的…
1.Logistic函数 在维基百科中,对logistic函数这样介绍道: A logistic function or logistic curve is a common "S" shape (sigmoid curve), with equation: $$f(x)=\frac{L}{1+e^{-k(x-x0)}}$$ Logistic函数呈'S'型曲线,当x趋于-∞时函数趋于0,当x趋于+∞时函数趋于L. 2.Softmax函数 softmax函数定义如下: In mathem…
一.h-softmax 在面对label众多的分类问题时,fastText设计了一种hierarchical softmax函数.使其具有以下优势: (1)适合大型数据+高效的训练速度:能够训练模型“在使用标准多核CPU的情况下10分钟内处理超过10亿个词汇”,特别是与深度模型对比,fastText能将训练时间由数天缩短到几秒钟. (2)支持多语言表达:利用其语言形态结构,fastText能够被设计用来支持包括英语.德语.西班牙语.法语以及捷克语等多种语言. 可以认为,FastText= (wo…