描述 一个有n个结点的树,设它的结点分别为v1, v2, …, vn,已知第i个结点vi的度数为di,问满足这样的条件的不同的树有多少棵.给定n,d1, d2, …, dn,编程需要输出满足d(vi)=di的树的个数. 题解 每颗树都对应以中prufer数列, prufer数列中数出现的个数 $=$ 节点的度数 -1 所以变成了求再prufer数列中, $x$出现次数为$c_x$ 的排列数 答案为$!(N - 2) / \prod\limits_{i = 1}^N{a_i-1}$ 直接算会爆LL…
题目大意:给定一棵树中全部点的度数,求有多少种可能的树 Prufer序列.详细參考[HNOI2008]明明的烦恼 直接乘会爆long long,所以先把每一个数分解质因数.把质因数的次数相加相减.然后再乘起来 注意此题无解须要输出0 当n!=1&&d[i]==0时 输出0 当Σ(d[i]-1)!=n-2时输出0 写代码各种脑残--竟然直接算了n-2没用阶乘-- #include<cstdio> #include<cstring> #include<iostre…
1211: [HNOI2004]树的计数 Time Limit: 10 Sec  Memory Limit: 162 MB Description 一个有n个结点的树,设它的结点分别为v1, v2, …, vn,已知第i个结点vi的度数为di,问满足这样的条件的不同的树有多少棵.给定n,d1, d2, …, dn,编程需要输出满足d(vi)=di的树的个数. Input 第一行是一个正整数n,表示树有n个结点.第二行有n个数,第i个数表示di,即树的第i个结点的度数.其中1<=n<=150,输…
知道prufer序列就能写...就是求个可重集的排列...先判掉奇怪的情况, 然后答案是(N-2)!/π(d[i]-1)! --------------------------------------------------------------------------- #include<cstdio> #include<algorithm> #include<cstring>   using namespace std;   typedef long long l…
题面: 一个有n个结点的树,设它的结点分别为v1, v2, …, vn,已知第i个结点vi的度数为di,问满足这样的条件的不同的树有多少棵.给定n,d1, d2, …, dn,你的程序需要输出满足d(vi)=di的树的个数. 题解: 乍一看是组合数学,,,当然了,实际上也是组合数. 只不过要是知道prufer数列就很简单了. 那先来看看prufer数列吧! 将树转化成Prufer数列的方法 一种生成Prufer序列的方法是迭代删点,直到原图仅剩两个点.对于一棵顶点已经经过编号的树T,顶点的编号为…
Description 一个有n个结点的树,设它的结点分别为v1, v2, -, vn,已知第i个结点vi的度数为di,问满足这样的条件的不同的树有多少棵.给定n,d1, d2, -, dn,编程需要输出满足d(vi)=di的树的个数. Input 第一行是一个正整数n,表示树有n个结点.第二行有n个数,第i个数表示di,即树的第i个结点的度数.其中1<=n<=150,输入数据保证满足条件的树不超过10^17个. Output 输出满足条件的树有多少棵. Sample Input 4 2 1…
prufer的应用.. 详细见这篇博客:https://www.cnblogs.com/dirge/p/5503289.html import java.math.BigInteger; import java.util.*; public class Main { static long n, h; public static void main(String[] args) { Scanner in = new Scanner(System.in); BigInteger f[] = new…
1211: [HNOI2004]树的计数 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2468  Solved: 868 Description 一个有n个结点的树,设它的结点分别为v1, v2, …, vn,已知第i个结点vi的度数为di,问满足这样的条件的不同的树有多少棵.给定n,d1, d2, …, dn,编程需要输出满足d(vi)=di的树的个数. Input 第一行是一个正整数n,表示树有n个结点.第二行有n个数,第i个数表示di,即…
题目链接 bzoj1211: [HNOI2004]树的计数 题解 prufer序 可重排列计数 代码 #include<bits/stdc++.h> using namespace std; #define int long long int n = 0; int b[10007]; int cnt[10007]; void Div(int x,int k = 1) { for(int j = 2;j * j <= x;++ j) { while(x % j == 0) { cnt[j]…
最近碰了$prufer$ 序列和组合数..于是老师留了一道题:P2624 [HNOI2008]明明的烦恼 qwq要用高精... 于是我们有了弱化版:P2290 [HNOI2004]树的计数(考一样的可还行OvO) 首先前置知识:$Prufer序列$ 然后,因为对于一个$ Prufer $序列有$n-2$ 项,而每个点的度数-1是这个点在$ Prufer$ 序列中出现的次数 所以...这不是多重集的排列吗(不懂多重集?) 所以我们成功了一半(雾) 在计算时会爆$ long \space long…