Mahout学习算法训练模型 mahout提供了许多分类算法,但许多被设计来处理非常大的数据集,因此可能会有点麻烦.另一方面,有些很容易上手,因为,虽然依然可扩展性,它们具有低开销小的数据集.这样一个低开销的方法是随机梯度下降(SGD)算法,Logistic回归.该算法是一个连续的(非平行)的算法,但它的速度快,因为在概念图中图13.9所示.最重要的处理大型数据,SGD算法采用恒定的内存量不管输入的大小.   这里的输出包含特别感兴趣的两个值.首先,AUC值(一种广泛使用的模型的质量度量)曲线下…
原贴地址:http://fuliang.iteye.com/blog/1482002  其它参考资料:http://en.wikipedia.org/wiki/Stochastic_gradient_descent   1. 基于梯度下降的学习        对于一个简单的机器学习算法,每一个样本包含了一个(x,y)对,其中一个输入x和一个数值输出y.我们考虑损失函数,它描述了预测值和实际值y之间的损失.预测值是我们选择从一函数族F中选择一个以w为参数的函数的到的预测结果. 我们的目标是寻找这样…
sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share 项目合作联系QQ:231469242 http://scikit-learn.org/stable/modules/sgd.html Stochasti…
FITTING A MODEL VIA CLOSED-FORM EQUATIONS VS. GRADIENT DESCENT VS STOCHASTIC GRADIENT DESCENT VS MINI-BATCH LEARNING. WHAT IS THE DIFFERENCE? In order to explain the differences between alternative approaches to estimating the parameters of a model,…
一.从Multinomial Logistic模型说起 1.Multinomial Logistic 令为维输入向量; 为输出label;(一共k类); 为模型参数向量: Multinomial Logistic模型是指下面这种形式: 其中: 例如:时,输出label为0和1,有: 2.Maximum Likelihood Estimate and Maximum a Posteriori Estimate (1).Maximum Likelihood Estimate 假设有数据集,为了训练一…
https://blog.csdn.net/u012328159/article/details/80252012 我们在训练神经网络模型时,最常用的就是梯度下降,这篇博客主要介绍下几种梯度下降的变种(mini-batch gradient descent和stochastic gradient descent),关于Batch gradient descent(批梯度下降,BGD)就不细说了(一次迭代训练所有样本),因为这个大家都很熟悉,通常接触梯队下降后用的都是这个.这里主要介绍Mini-b…
文章主要介绍的是koren 08年发的论文[1],  2.1 部分内容(其余部分会陆续补充上来). koren论文中用到netflix 数据集, 过于大, 在普通的pc机上运行时间很长很长.考虑到写文章目地主要是已介绍总结方法为主,所以采用Movielens 数据集. 要用到的变量介绍: Baseline estimates       object function: 梯度变化(利用stochastic gradient descent算法使上述的目标函数值,在设定的迭代次数内,降到最小) 系…
随机梯度下降法  [转载时请注明来源]:http://www.cnblogs.com/runner-ljt/ Ljt 作为一个初学者,水平有限,欢迎交流指正. 批量梯度下降法在权值更新前对所有样本汇总误差,当样本较多时,其计算量就会非常大. 随机梯度下降法的权值更新是通过单个的样本进行更新,每读取一条样本数据就对所有权值进行一次更新,然后判断是否收敛,若不收敛则继续代入样本数据进行更新. 随机梯度下降法使损伤函数趋近最小值的速度更快,但是可能造成永远不能收敛到最小值,或一直在最小值周围震荡. 设…
要判断Stochastic Gradient Descent是否收敛,可以像Batch Gradient Descent一样打印出iteration的次数和Cost的函数关系图,然后判断曲线是否呈现下降且区域某一个下限值的状态.由于训练样本m值很大,而对于每个样本,都会更新一次θ向量(权重向量),因此可以在每次更新θ向量前,计算当时状况下的cost值,然后每1000次迭代后,计算一次average cost的值.然后打印出iteration和cost之间的关系. 1.不同曲线图代表的含义及应对策…
文章主要介绍的是koren 08年发的论文[1],  2.3部分内容(其余部分会陆续补充上来).koren论文中用到netflix 数据集, 过于大, 在普通的pc机上运行时间很长很长.考虑到写文章目地主要是已介绍总结方法为主,所以采用Movielens 数据集. 变量介绍 部分变量介绍可以参看<基于baseline和stochastic gradient descent的个性化推荐系统> 文章中,将介绍两种方法实现的简易个性化推荐系统,用RMSE评价标准,对比这两个方法的实验结果. (1)…