作者 | 张皓 引言 RNN是深度学习中用于处理时序数据的关键技术, 目前已在自然语言处理, 语音识别, 视频识别等领域取得重要突破, 然而梯度消失现象制约着RNN的实际应用.LSTM和GRU是两种目前广为使用的RNN变体,它们通过门控机制很大程度上缓解了RNN的梯度消失问题,但是它们的内部结构看上去十分复杂,使得初学者很难理解其中的原理所在.本文介绍”三次简化一张图”的方法,对LSTM和GRU的内部结构进行分析.该方法非常通用,适用于所有门控机制的原理分析. 预备知识: RNN RNN (re…