Progressive Differentiable Architecture Search:Bridging the Depth Gap between Search and Evaluation 2019-04-30 11:46:21 Paper:https://arxiv.org/pdf/1904.12760.pdf Code:https://github.com/chenxin061/pdarts 本文是 DARTS 的改善,关于 DARTS 的细节,可以参考其原文(代码,博文). 本文…
P-DARTS 2019-ICCV-Progressive Differentiable Architecture Search Bridging the Depth Gap Between Search and Evaluation Tongji University && Huawei GitHub: 200+ stars Citation:49 Motivation Question: DARTS has to search the architecture in a shallow…
摘要 神经网络在多个领域都取得了不错的成绩,但是神经网络的合理设计却是比较困难的.在本篇论文中,作者使用 递归网络去省城神经网络的模型描述,并且使用 增强学习训练RNN,以使得生成得到的模型在验证集上取得最大的准确率. 在 CIFAR-10数据集上,基于本文提出的方法生成的模型在测试集上得到结果优于目前人类设计的所有模型.测试集误差率为3.65%,比之前使用相似结构的最先进的模型结构还有低0.09%,速度快1.05倍. 在 Penn Treebank数据集上,根据本文算法得到的模型能够生成一个新…
Dunhui Yu, Jian Wang, Bo Hu, Jianxiao Liu, Xiuwei Zhang, Keqing He, and Liang-Jie Zhang. 2011. A Practical Architecture of Cloudification of Legacy Applications. In Proceedings of the 2011 IEEE World Congress on Services (SERVICES '11). IEEE Computer…
DARTS: Differentiable Architecture Search 2019-03-19 10:04:26accepted by ICLR 2019 Paper:https://arxiv.org/pdf/1806.09055.pdf Code:https://github.com/quark0/darts 1. Motivation and Background:  前人的网络搜索方法,要么是基于 RL 的,要么是基于进化算法的,都是非常耗时的,最近的几个算法表示他们的计算时间…
Progressive Neural Architecture Search 2019-03-18 20:28:13 Paper:http://openaccess.thecvf.com/content_ECCV_2018/papers/Chenxi_Liu_Progressive_Neural_Architecture_ECCV_2018_paper.pdf Code (PyTorch version):https://github.com/chenxi116/PNASNet.pytorch…
Pytorch实现代码:https://github.com/MenghaoGuo/AutoDeeplab 创新点 cell-level and network-level search 以往的NAS算法都侧重于搜索cell的结构,即当搜索得到一种cell结构后只是简单地将固定数量的cell按链式结构连接起来组成最终的网络模型.AutoDeeplab则将如何cell的连接方式也纳入了搜索空间中,进一步扩大了网络结构的范围. dense image prediction 之前的大多数NAS算法都是…
摘要 本文提出了一种新方法,可以基于简单的爬山过程自动搜索性能良好的CNN架构,该算法运算符应用网络态射,然后通过余弦退火进行短期优化运行. 令人惊讶的是,这种简单的方法产生了有竞争力的结果,尽管只需要与训练单个网络相同数量级的资源.例如使用该算法,在单个GPU上训练12个小时就可以将CIFAR-10数据集的错误率降低到6%一下,训练一整天后能够降低到5%左右. 1.介绍 背景不再详述,我们可以知道的是传统的优化算法并不能实现神经网络架构的自动搜索是因为其架构搜索空间是 离散的(例如层数.层类型…
论文笔记系列-Neural Network Search :A Survey 论文 笔记 NAS automl survey review reinforcement learning Bayesian Optimization evolutionary algorithm  注:本文主要是结合自己理解对原文献的总结翻译,有的部分直接翻译成英文不太好理解,所以查阅原文会更直观更好理解. 本文主要就Search Space.Search Strategy.Performance Estimatio…
Mastering the game of Go with deep neural networks and tree search Nature 2015  这是本人论文笔记系列第二篇 Nature 的文章了,第一篇是 DQN.好紧张!好兴奋! 本文可谓是在世界上赚够了吸引力! 围棋游戏被看做是 AI 领域最有挑战的经典游戏,由于其无穷的搜索空间 和 评价位置和移动的困难.本文提出了一种新的方法给计算机来玩围棋游戏,即:利用 "value network" 来评价广泛的位置 和 “p…