首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
NOIP2016提高A组模拟10.15总结
】的更多相关文章
【NOIP2016提高A组模拟10.15】最大化
题目 分析 枚举两个纵坐标i.j,接着表示枚举区域的上下边界, 设对于每个横坐标区域的前缀和和为\(s_l\),枚举k, 显然当\(s_k>s_l\)时,以(i,k)为左上角,(j,k)为右下角的矩阵一定合法. k从小到大,维护一个单调队列, 显然当\(l1<l2\)时 如果\(s_{l1}<s_{l2}\),l2一定对答案没有贡献,就不将其加入单调队列. 对于一个k,在单调队列中二分,枚举出一个最小的位置,并且\(s_k>s_l\). #include <iostream&…
【JZOJ4820】【NOIP2016提高A组模拟10.15】最大化
题目描述 输入 输出 样例输入 3 2 4 0 -10 8 -2 -2 样例输出 4 数据范围 解法 枚举两条扫描线,在这两条扫描线之间的矩阵,可以将之转化为一个序列b[i]=a[i][1..m]. 然后矩阵上的问题就转化成序列上的问题: 给定一个序列,求最长的连续子序列的和为正数的长度. 考虑到是所有区间问题,考虑分治. 对于一个区间[l,r],要求的是跨两半部分的最长长度. 先求出以mid为右端点的最长子区间: 设一个指针指向mid,考虑右移指针. 如果新加入元素是小于0,那么答案不会更优,…
NOIP2016提高A组模拟10.15总结
第一题,就是将原有的式子一步步简化,不过有点麻烦,搞了很久. 第二题,枚举上下边界,维护一个单调队列,二分. 比赛上没有想到,只打了个暴力,坑了80分. 第三题,贪心,最后的十多分钟才想到,没有打出来. 心得 1.首先感谢出题人,暴力分好多. 2.但是,比赛期间,我在交头接耳,浪费了很多时间.导致时间不够.…
【NOIP2016提高A组模拟10.15】打膈膜
题目 分析 贪心, 先将怪物按生命值从小到大排序(显然按这个顺序打是最优的) 枚举可以发对少次群体攻击, 首先将所有的群体攻击发出去, 然后一个一个怪物打,当当前怪物生命值大于2,如果还有魔法值就放重击, 其余情况普通攻击. #include <cmath> #include <iostream> #include <cstdio> #include <cstdlib> #include <cstring> #include <algori…
【NOIP2016提高A组模拟10.15】算循环
题目 分析 一步步删掉循环, 首先,原式是\[\sum_{i=1}^n\sum_{j=1}^m\sum_{k=i}^n\sum_{l=j}^m\sum_{p=i}^k\sum_{q=j}^l1\] 删掉最后两个循环 \[\sum_{i=1}^n\sum_{j=1}^m\sum_{k=i}^n\sum_{l=j}^m(k-i+1)(l-j+1)\] 发现,当\(i,j\)固定,随着\(k,l\)的变化,\((k-i+1),(l-j+1)\)都是每次减少1 SO, \[\sum_{i=1}^n\su…
【JZOJ4819】【NOIP2016提高A组模拟10.15】算循环
题目描述 输入 输出 样例输入 167 198 样例输出 906462341 数据范围 解法 令f(n)=∑ni=1i,g(n)=∑ni=1i2 易得ans=∑ni=1∑mj=1f(n−i+1)∗f(m−j+1) 等价于ans=∑ni=1∑mj=1f(i)∗f(j) 显然f(n)=n∗(n−1)/2: 拆开得ans=14∑ni=1∑mj=1i∗(i+1)∗j∗(j+1) 再得 ans=14∑i=1ni∗(i+1)∗∑j=1mj∗(j+1)=14∑i=1n∗(f(i)+g(i))∗∑j=1m∗(f…
【NOIP2016提高A组模拟9.15】Osu
题目 分析 考虑二分答案, 二分小数显然是不可取的,那么我们将所有可能的答案求出来,记录在一个数组上,排个序(C++调用函数很容易超时,手打快排,时间复杂度约为\(O(>8*10^7)\),但相信梦想的力量). 剩下就简单了,将二分出的值判断是否可以获得k分以上, 这里可以用多种方法,spfa.dp dp: \(dp_i\)表示移动到了第i个点的最大分数 #include <cmath> #include <iostream> #include <cstdio>…
【NOIP2016提高A组模拟8.15】Garden
题目 分析 其实原题就是[cqoi2012][bzoj2669]局部极小值. 有一个n行m列的整数矩阵,其中1到nm之间的每个整数恰好出现一次.如果一个格子比所有相邻格子(相邻是指有公共边或公共顶点)都小,我们说这个格子是局部极小值. 给出所有局部极小值的位置,你的任务是判断有多少个可能的矩阵. 发现,X的位置最多有8个,那我们考虑状压dp. 我们从小到大把数填进去,用\(f_{i,j}\)表示,把第i个数填进去后,每个X是否被填了数,用二进制数j表示. 预处理出\(rest_j\)表示填充状态…
【JZOJ4784】【NOIP2016提高A组模拟9.15】Map
题目描述 输入 输出 样例输入 4 4 2 1 2 2 3 3 2 3 4 1 2 1 4 样例输出 14 数据范围 样例解释 upd:保证原图连通. "不相交路径"的定义为不存在相同的边.可以存在相同的点.重边视为不同的边. 对于样例: 原图有2个安全点对为(2,3),(3,2) 询问1答案为4,新增的安全点对为(1,2),(1,3),(2,1)(3,1) 询问2答案为10,新增的安全点对为(1,2),(1,3),(1,4),(2,1)(2,4),(3,1),(3,4),(4,1),…
【NOIP2016提高A组模拟9.15】Map
题目 分析 发现,当原图是一棵树的时候,那么新建一条边后,就会变成环套树, 而环内的所有点对都是安全点对,如果环中有k个点,答案就是\(k(k-1)\) 联想到,当把原图做一遍tarjan缩点,每个环缩成一个点,点权为环中的点数,然后就变成了一棵树,那么新建一条边后,就会变成环套树, 经过计算,增加的点对数就是点权和的平方减去点权的平方和 至于如何求出点权和的平方以及点权的平方和,对于每个询问(x,y) 答案就是x到y的路径上的点权和的平方以及点权的平方和,用lca来做, 如果手贱,可以打树链剖…