1.坐标点类 package cn.test.domain; public class Point { double x; double y; public Point(){ } public Point(double x, double y) { super(); this.x = x; this.y = y; } public double getX() { return x; } public void setX(double x) { this.x = x; } public doubl…
http://support.microsoft.com/kb/976832/zh-cn http://support.microsoft.com/kb/976832/zh-tw 症状 当智能卡插入智能卡阅读器后时,Windows 尝试下载并安装智能卡 minidrivers 通过插服务卡.如果自定义的加密服务提供程序未在系统上安装智能卡的驱动程序在任一预配置位置,如 Windows 更新. WSUS 或 intranet 路径不可用,在通知区域中将收到以下错误消息: 未能成功安装设备驱动程序软…
摘要:本论文先介绍了多项式数据拟合的相关背景,以及对整个课题做了一个完整的认识.接下来对拟合模型,多项式数学原理进行了详细的讲解,通过对文献的阅读以及自己的知识积累对原理有了一个系统的认识.介绍多项式曲线拟合的基本理论,对多项式数据拟合原理进行了全方面的理论阐述,同时也阐述了曲线拟合的基本原理及多项式曲线拟合模型的建立.具体记录了多项式曲线拟合的具体步骤,在建立理论的基础上具体实现多项式曲线的MATLAB实现方法的研究,采用MATLAB R2016a的平台对测量的数据进行多项式数据拟合,介绍了M…
代码:使用tensorflow进行数据点的线性拟合操作 第一步:使用np.random.normal生成正态分布的数据 第二步:将数据分为X_data 和 y_data 第三步:对参数W和b, 使用tf.Variable()进行初始化,对于参数W,使用tf.random_normal([1], -1.0, 1.0)构造初始值,对于参数b,使用tf.zeros([1]) 构造初始值 第四步:使用W * X_data + b 构造出预测值y_pred 第五步:使用均分误差来表示loss损失值,即tf…
TensorFlow™ 是一个开放源代码软件库,用于进行高性能数值计算.借助其灵活的架构,用户可以轻松地将计算工作部署到多种平台(CPU.GPU.TPU)和设备(桌面设备.服务器集群.移动设备.边缘设备等).TensorFlow™ 最初是由 Google Brain 团队(隶属于 Google 的 AI 部门)中的研究人员和工程师开发的,可为机器学习和深度学习提供强力支持,并且其灵活的数值计算核心广泛应用于许多其他科学领域 接下来我们通过一个线性拟合的简单实例来说明一下 第一步,通过np.ran…
TensorFlow是咱们机器学习领域非常常用的一个组件,它在数据处理,模型建立,模型验证等等关于机器学习方面的领域都有很好的表现,前面的一节我已经简单介绍了一下TensorFlow里面基础的数据结构即:Tensor和Dataset: 这里咱们开始介绍TensorFlow的建模过程以及验证模型的一些简单方法.其实无论是sklearn还是TensorFlow,他们的模型建立过程都是相似的,都是经历columns类型声明,模型定义,数据训练,validation等等几个步骤.前面的几节内容我已经简单…
目录 1. 载入数据 列解释Columns: 2. 数据分析 2.1 预处理 2.2 可视化 3. 训练模型 3.1 线性拟合 3.2 多项式回归(二次) 3.3 脊回归(Ridge Regression),又叫岭回归 3.4 Lasso 回归 3.5 支持向量回归 Support Vector Regression 3.6 决策树回归 Decision Tree Regression 3.7 随机森林回归 Random Forest Regression 4. 评估结果汇总 5. 可视化评估结…
Java 使用 CommonsMath3 的线性和非线性拟合实例,带效果图 例子查看 GitHub Gitee 运行src/main/java/org/wfw/chart/Main.java 即可查看效果 src/main/java/org/wfw/math 包下是简单的使用 版本说明 JDK:1.8 commons-math:3.6.1 一些基础知识 线性:两个变量之间存在一次方函数关系,就称它们之间存在线性关系.也就是如下的函数: \[f(x)=kx+b \] 非线性:除了线性其他的都是非线…
前段时间做的项目中需要用到highcharts绘制各种图表,其实绘制图表本身代码很简单,但是由于需求很多,有大量的图形需要绘制,所以就不得不复制粘贴大量重复(默认配置等等)的代码,所以,后来抽空自己基于highcharts封装了一个插件.组件暴露一个Hxt的全局对象,它有以下一些方法来绘制不同类的图形,从此以后,画图只需简简单单的几行配置就ok了!赶紧点进来看看实例吧! Hxt.line(elem, data, options); //渲染默认折线图 Hxt.spline(elem, data,…
转自:http://blog.itpub.net/12199764/viewspace-1743145/ 项目中有涉及趋势预测的工作,整理一下这3种拟合方法:1.线性拟合-使用mathimport mathdef linefit(x , y):    N = float(len(x))    sx,sy,sxx,syy,sxy=0,0,0,0,0    for i in range(0,int(N)):        sx  += x[i]        sy  += y[i]        s…