前两天突发奇想,写一个乘法的实现,但不用乘号*.并测试一下性能如何.因此就有了下面的代码:(本文主要目的是为了玩递归和位移,因此仅限自然数) 首先,标准乘法: int commonMultiplication(int a, int b) => a * b; 第二,从数学的角度,乘法其实就是加法,只是加法的简写而已,因此 a * b 可以理解为 b 个 a 相加:故得出用加法代替的乘法.为了减少加法的次数,取 a, b 两数的最小值进行循环: int plusMultiplication(int…
1287 矩阵乘法  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold       题目描述 Description 小明最近在为线性代数而头疼,线性代数确实很抽象(也很无聊),可惜他的老师正在讲这矩阵乘法这一段内容.当然,小明上课打瞌睡也没问题,但线性代数的习题可是很可怕的.小明希望你来帮他完成这个任务. 现在给你一个ai行aj列的矩阵和一个bi行bj列的矩阵,要你求出他们相乘的积(当然也是矩阵).(输入数据保证aj=bi,不需要判断) 矩阵乘法的定义: 1…
补码一位乘法 首先了解下什么是补码? 补码概念的理解,需要先从“模”的概念开始. 我们可以把模理解为一个容器的容量.当超出这个 容量时,会自动溢出.如:我们最常见到的时钟,其容量 是 12,过了 12 点之后,就会变为 1 点, 2 点……也就是 说,超过12的部分将被丢弃.那么,在这个例子当中,时钟 的模就是12.模的概念可以帮助我们理解补码的含义. 补码的引出:假设现在时钟的时针指向 4 点的位 置,要使其指向 3 点,可以怎么操作呢?很明显,共有 2 种方法,顺时针拨 11 格(+11),…
★ 引子         前面两篇介绍了 Comba 乘法,最后提到当输入的规模很大时,所需的计算时间会急剧增长,因为 Comba 乘法的时间复杂度仍然是 O(n^2).想要打破乘法中 O(n^2) 的限制,需要从一个完全不同的角度来看待乘法.在下面的乘法算法中,需要使用 x 和 y 这两个大整数的多项式基表达式 f(x) 和 g(x) 来表示. 令 f(x) = a * x + b,g(x) = c * x + d,h(x) = f(x) * g(x).这里的 x 相当于一个基,比如十进制下,…
★ 引子          原本打算一篇文章讲完,后来发现篇幅会很大,所以拆成两部分,先讲原理,再讲实现.实现的话相对复杂,要用到内联汇编,要考虑不同平台等等. 在大整数计算中,乘法是非常重要的,因为在公钥密码学中模幂运算要频繁使用乘法,所以乘法的性能会直接影响到模幂运算的效率.下面将会介绍两种乘法:基线乘法和 Comba 乘法,尽管他们的原理和计算看起来十分类似,而且算法的时间复杂度都是 O(n^2),但是他们的效率差别是很大的. ★ 基线乘法 (Baseline Multiplication…
算法课有这么一节,专门介绍分治法的,上机实验课就是要代码实现大整数乘法.想当年比较混,没做出来,颇感遗憾,今天就把这债还了吧! 大整数乘法,就是乘法的两个乘数比较大,最后结果超过了整型甚至长整型的最大范围,此时如果需要得到精确结果,就不能常规的使用乘号直接计算了.没错,就需要采用分治的思想,将乘数“分割”,将大整数计算转换为小整数计算. 在这之前,让我们回忆一下小学学习乘法的场景吧.个位数乘法,是背诵乘法口诀表度过的,不提也罢:两位数乘法是怎么做的呢?现在就来一起回忆下12*34吧:    3 …
动态规划--矩阵链乘法 1.矩阵乘法       Note:只有当矩阵A的列数与矩阵B的行数相等时A×B才有意义.一个m×r的矩阵A左乘一个r×n的矩阵B,会得到一个m×n的矩阵C. #include <iostream> using namespace std; #define A_ROWS 3 #define A_COLUMNS 2 #define B_ROWS 2 #define B_COLUMNS 3 void matrix_multiply(int A[A_ROWS][A_COLUM…
★ 引子         前面两篇介绍了 Comba 乘法,最后提到当输入的规模很大时,所需的计算时间会急剧增长,因为 Comba 乘法的时间复杂度仍然是 O(n^2).想要打破乘法中 O(n^2) 的限制,需要从一个完全不同的角度来看待乘法.在下面的乘法算法中,需要使用 x 和 y 这两个大整数的多项式基表达式 f(x) 和 g(x) 来表示. 令 f(x) = a * x + b,g(x) = c * x + d,h(x) = f(x) * g(x).这里的 x 相当于一个基,比如十进制下,…
# 九九乘法表 print(" 九九乘法表") for table_x in range(1,10): for table_y in range(1,table_x +1): print('{}x{}={}'.format(table_x,table_y,table_x*table_y),end=' ')# end = ' '表示打印不换行,显示空格 print('')…
之前说了for循环的概念以及常用到的操作,那么我们接下来做几个巩固练习: 1.打印99乘法表: 99乘法表的形式: 1*1 = 1 1*2 = 2 2*2 = 4 1*3 = 3 2*3 = 6 3*3 = 9 思路:虽然现在仅仅写到3,那我们来看看他的规律: 都是以1开头同时列的个数是递增的那么内部循环应该是: for(int i = 1;条件暂时不确定;i++){ } 那么外部循环是怎样的呢?外部循环的次数是由被乘数决定的,从上述的式子来看,那么被乘数也是从一递增的,用代码表示外部循环应该是…