汉诺塔I】的更多相关文章

目录 1 问题描述 2 解决方案  2.1 递归法 2.2 非递归法 1 问题描述 Simulate the movement of the Towers of Hanoi Puzzle; Bonus is possible for using animation. e.g. if n = 2 ; A→B ; A→C ; B→C; if n = 3; A→C ; A→B ; C→B ; A→C ; B→A ; B→C ; A→C; 翻译:模拟汉诺塔问题的移动规则:获得奖励的移动方法还是有可能的.…
using System;using System.Collections.Generic;using System.Linq;using System.Text; namespace MyExample_Hanoi_{    class Program    {        static void Main(string[] args)        {            HanoiCalculator c = new HanoiCalculator();            Cons…
主要是从汉诺塔及八皇后问题体会递归算法. 汉诺塔: #include <stdio.h> void move(int n, char x,char y, char z){ if(1==n) { printf("%c-->%c\n",x,z); } else { move(n-1,x,z,y); //将n-1个盘子从x借助z移到y上 printf("%c-->%c\n",x,z); //将第n个盘子从x移到z上 move(n-1,y,x,z);…
递归是许多经典算法的backbone, 是一种常用的高效的编程策略.简单的几行代码就能把一团遭的问题迎刃而解.这篇博客主要通过解决汉诺塔问题来理解递归的精髓. 汉诺塔问题简介: 在印度,有这么一个古老的传说:在世界中心贝拿勒斯(在印度北部)的圣庙里,一块黄铜板上插着三根宝石针.印度教的主神梵天在创造世界的时候,在其中一根针上从下到上地穿好了由大到小的64片金片,这就是所谓的汉诺塔.不论白天黑夜,总有一个僧侣在按照下面的法则移动这些金片,1. 一次只移动一片: 2. 不管在哪根针上,小片必在大片上…
C语言学习宝典(4) 指针:可以有效的表示复杂的数据结构,能动态的分配动态空间,方便的使用字符串,有效的使用数组,能直接处理内存单元 不掌握指针就没有掌握C语言的精华 地址:系统为每一个变量分配一个内存单元,内存区的每一个字节有一个编号,这就是“地址” 指针的定义; 基类型 * 指针变量名 例如 int *pointer; 可以使用赋值语句使一个指针变量得到另一个变量的地址,从而使它指向一个该变量. 例1  通过指针变量访问整形变量 /******************* 功能:通过指针变量访…
经典递归算法汉诺塔分析: 当A柱子只有1个盘子,直接A --> C 当A柱子上有3个盘子,A上第一个盘子 --> B, A上最后一个盘子 --> C, B上所有盘子(1个) --> C 当A柱子上有那个盘子,A上n-1个盘子 --> B,A上最后一个盘子 --> C, B上所有盘子(n-1个)--> C 规律: 当有1个盘子时,A(1) --> C 当有n个盘子时,A(n-1)--> B, A(1)--> C, B(n-1) --> C d…
#include<iostream> #include<cstdio> #include<cmath> using namespace std; ]; int rule(int n) { f[]=; f[]=; f[]=; ; int m=k; ; ;i<=n;i++) { f[i]=(f[i-]+l)%; m--; ) { k++; m=k; l*=; l%=; } } return f[n]; } int main() { int t; while(~scan…
1019: [SHOI2008]汉诺塔 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1495  Solved: 916[Submit][Status][Discuss] Description 汉诺塔由三根柱子(分别用A B C表示)和n个大小互不相同的空心盘子组成.一开始n个盘子都摞在柱子A上,大的在下面,小的在上面,形成了一个塔状的锥形体. 对汉诺塔的一次合法的操作是指:从一根柱子的最上层拿一个盘子放到另一根柱子的最上层,同时要保证被移动的盘…
Answer: //Li Cuiyun,October 14,2016. //用递归方法编程解决汉诺塔问题 package tutorial_3_5; import java.util.*; public class HanoiTower { public static void main(String[] args) { // TODO Auto-generated method stub @SuppressWarnings("resource") Scanner sc=new Sc…
一:约瑟夫环问题是由古罗马的史学家约瑟夫提出的,问题描述为:编号为1,2,-.n的n个人按顺时针方向围坐在一张圆桌周围,每个人持有一个密码(正整数),一开始任选一个正整数作为报数上限值m,从第一个人开始按顺时针方向自1开始报数,报到m时停止报数,报m的那个人出列,将他的密码作为新的m值,从他顺时针方向的下一个人开始重新从1报数,数到m的那个人又出列:如此下去,直到圆桌周围的人全部出列为止. 一般情况下,循环链表就可以解决这个问题,但是我正在学习递归,所以就递归实现了,下面附上代码: #inclu…
今天看了递归函数,就写个汉诺塔,哈哈.........(每天记录一点点)…
javascript实现汉诺塔动画效果 当初以为不用html5也很简单,踩了javascript单线程的大坑后终于做出来了,没事可以研究下,对理解javascript的执行过程还是很有帮助的,代码很烂大家凑合着看. <html> <head> <meta charset="UTF-8"> <title>Tower of Hanoi 2.0.0</title> <script src="http://apps.b…
看了博文自己动手写了代码. 这能值几个钱? 请写代码完成汉诺塔的算法:void Hanoi(int maxLevel); 比如2层汉诺塔,需要打印(Console.WriteLine)出如下文本: A -> B A -> C B -> C function HanNuoTa(Level,A,B,C) { if(Level==1) { console.log(A+"-->"+C); } else { HanNuoTa(Level-1,A,C,B); console…
在这里我们将构造一个基于HT for Web的HTML5+JavaScript来实现汉诺塔游戏. http://hightopo.com/demo/hanoi_20151106/index.html 汉诺塔的游戏规则及递归算法分析请参考http://en.wikipedia.org/wiki/Tower_of_Hanoi. 知道了汉诺塔的规则和算法,现在就开始创建元素.用HT for Web(http://www.hightopo.com)现有的3D模板创建底盘和3根柱子不是问题,问题是要创建若…
在这里我们将构造一个基于HT for Web的HTML5+JavaScript来实现汉诺塔游戏. 汉诺塔的游戏规则及递归算法分析请参考http://en.wikipedia.org/wiki/Tower_of_Hanoi. 知道了汉诺塔的规则和算法,现在就开始创建元素.用HT for Web(http://www.hightopo.com)现有的3D模板创建底盘和3根柱子不是问题,问题是要创建若干个中空的圆盘.一开始的想法是:创建一个圆柱体,将圆柱体的上下两端隐藏,设置柱面的宽度来实现圆盘的效果…
难度等级:白银 3145 汉诺塔问题 题目描述 Description 汉诺塔问题(又称为河内塔问题),是一个大家熟知的问题.在A,B,C三根柱子上,有n个不同大小的圆盘(假设半径分别为1-n吧),一开始他们都叠在我A上(如图所示),你的目标是在最少的合法移动步数内将所有盘子从A塔移动到C塔. 游戏中的每一步规则如下: 1. 每一步只允许移动一个盘子(从一根柱子最上方到另一个柱子的最上方) 2. 移动的过程中,你必须保证大的盘子不能在小的盘子上方(小的可以放在大的上面,最大盘子下面不能有任何其他…
题目介绍: 标准的汉诺塔上有n个大小各异的盘子.现给定一个初始局面(见图1),求它到目标局面(见图2)至少需要移动多少步? 移动规则:一次只能移动一个盘子:且在移动盘子之前,必须把压在上面的其他盘子先移走:基于汉诺塔问题的原始约定,编号大的盘子不得压在编号小的盘子上. Sample Input 3 1 1 1 2 2 2 3 1 2 3 3 2 1 4 1 1 1 1 1 1 1 1 0 Sample Output Case 1: 7 Case 2: 3 Case 3: 0 问题分析: 为了更好…
1.背景介绍 Hanio (汉诺塔,又称河内塔)问题是源于印度一个古老传说的益智玩具.大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘.大梵天命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上.并且规定,在小圆盘上不能放大圆盘,在三根柱子之间一次只能移动一个圆盘. 我们姑且不去追溯传说的缘由,现考虑一下把64片金片,由一根针上移到另一根针上,并且始终保持上小下大的顺序.这需要多少次移动呢?这里需要递归的方法.假设有n片,移动次数是f(n).显然f…
代码如下: #!/usr/bin/env python # encoding: utf-8 """ @author: 侠之大者kamil @file: 汉诺塔.py @time: 2016/3/20 20:00 """ m = input(">>Please enter a maximum value of the sequence:") m = int(m)+1 def move(a,b,c,n): if n =…
//================================================= // File Name : Tower_demo //------------------------------------------------------------------------------ // Author : Common //主类 //Function : Tower_demo public class Tower_demo { static int nDisks…
汉诺塔:汉诺塔(又称河内塔)问题是源于印度一个古老传说的益智玩具.大梵天创造世界的时候做了三根金刚石柱子, 在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘.大梵天命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上. 并且规定,在小圆盘上不能放大圆盘,在三根柱子之间一次只能移动一个圆盘. 汉诺塔的递归实现算法,将A中的圆盘借助B圆盘完全移动到C圆盘上, 每次只能移动一个圆盘,并且每次移动时大盘不能放在小盘上面 递归函数的伪算法为如下: if(n == 1)    直接将A柱子上的圆盘从…
Description 一个汉诺塔,给出了移动的优先顺序,问从A移到按照规则移到另一个柱子上的最少步数. 规则:小的在大的上面,每次不能移动上一次移动的,选择可行的优先级最高的. Sol DP. 倒着DP.但是他有优先级,所以他的方案是唯一的. 状态 \(f[a][i]\) 表示 将 \(a\) 柱上的 \(i\) 个移到,能移动到的柱子上的步数. 他能移动到的柱子也是唯一的,这个可以跟DP一起递推出来. \(g[a][j]\) 表示 将 \(a\) 柱上的 \(i\) 个能移动到的柱子. 然后…
汉诺塔(三) 时间限制:3000 ms  |  内存限制:65535 KB 难度:3   描述 在印度,有这么一个古老的传说:在世界中心贝拿勒斯(在印度北部)的圣庙里,一块黄铜板上插着三根宝石针.印度教的主神梵天在创造世界的时候,在其中一根针上从下到上地穿好了由大到小的64片金片,这就是所谓的汉诺塔.不论白天黑夜,总有一个僧侣在按照下面的法则移动这些金片:一次只移动一片,不管在哪根针上,小片必须在大片上面.僧侣们预言,当所有的金片都从梵天穿好的那根针上移到另外一根针上时,世界就将在一声霹雳中消灭…
//汉诺塔问题//HanYang 2016/10/15 import java.util.Scanner; //输出public class Hanuota { public static void Show(String a,String b){  System.out.print(" " + a + "->" + b + " " ); } //从a移到c    public static void Fun(int n, String a…
汉诺塔: 有三根杆子A,B,C.A杆上有N个(N>1)穿孔圆环,盘的尺寸由下到上依次变小.要求按下列规则将所有圆盘移至C杆: 每次只能移动一个圆盘: 大盘不能叠在小盘上面. 提示:可将圆盘临时置于B杆,也可将从A杆移出的圆盘重新移回A杆,但都必须遵循上述两条规则. 问:如何移?最少要移动多少次? 为了解决这个问题,不妨假设已经知道怎样移动N-1个圆环了.现在,为了把起点盘上的圆环移动到目标盘,需要做如下操作: 1.把N-1个圆环从起点盘移动到(当前)没有任何圆环的过度盘: 2.把最后一个圆环从起…
之前遇见这个问题,非常费劲地理解了,并写出代码,然后过段时间,再遇见这个问题,又卡住了,如此反反复复两三次,才发现自己对递归的理解依然很肤浅.今天无聊,重温<算法:c语言实现>一书,又遇见了这个问题,心头一紧,担心要费些时间才能写出代码,没想到的是,再理解了书中对递归的定义,蒙住源代码动手写,发现很快就写出来了,甚至都没有费力去模拟整个汉诺塔移动过程,只是根据递归的要领(数学归纳法)分析了一下问题,便得出了一个递归形式,照此写代码,竟然没错.由此也醒悟到,很多时候,用递归写代码并不难,但却常常…
汉诺塔(三) 时间限制:3000 ms  |  内存限制:65535 KB 难度:3   描述 在印度,有这么一个古老的传说:在世界中心贝拿勒斯(在印度北部)的圣庙里,一块黄铜板上插着三根宝石针.印度教的主神梵天在创造世界的时候,在其中一根针上从下到上地穿好了由大到小的64片金片,这就是所谓的汉诺塔.不论白天黑夜,总有一个僧侣在按照下面的法则移动这些金片:一次只移动一片,不管在哪根针上,小片必须在大片上面.僧侣们预言,当所有的金片都从梵天穿好的那根针上移到另外一根针上时,世界就将在一声霹雳中消灭…
3.4 In the classic problem of the Towers of Hanoi, you have 3 towers and N disks of different sizes which can slide onto any tower. The puzzle starts with disks sorted in ascending order of size from top to bottom (i.e., each disk sits on top of an e…
1019: [SHOI2008]汉诺塔 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 559  Solved: 341[Submit][Status] Description 汉诺塔由三根柱子(分别用A B C表示)和n个大小互不相同的空心盘子组成.一开始n个盘子都摞在柱子A上,大的在下面,小的在上面,形成了一个塔状的锥形体.  对汉诺塔的一次合法的操作是指:从一根柱子的最上层拿一个盘子放到另一根柱子的最上层,同时要保证被移动的盘子一定放在比它更大…
汉诺塔问题II Time Limit: 1 Sec  Memory Limit: 64 MB Submit: 1556  Solved: 720 Description 汉诺塔(又称河内塔)问题是源于印度一个古老传说的益智玩具.大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘.大梵天命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上.并且规定,在小圆盘上不能放大圆盘,在三根柱子之间一次只能移动一个圆盘. Input 输入圆盘数n( 1 <= n…