Floyd算法解决多源最短路问题】的更多相关文章

说好的写dijkstra 算法堆优化版本的,但是因为,妹子需要,我还是先把Floyd算法写一下吧!啦啦啦! 咳咳,还是说正事吧! ------------------------------------------------说正事专用分隔符------------------------------------------ 用一个关系式,表达一下Floyd算法和dijkstra算法之间的关系 是不是很好懂,其实就把dijkstra算法做了n遍,额鹅鹅鹅,也不能说n遍吧,看有多少个点, 每个点轮…
接下来是图论问题求解最短路问题的最后一个,求解多元汇最短路问题 我们之前一般都是问1-n的最短路径,这里我们要能随便去问i到j的最短路径: 这里介绍一下Floyd算法:我们只有一个d[maxn][maxn]数组直接存储从i到j的最短路径,我们先看代码: #include<bits/stdc++.h>#define maxn 210#define INF 1000000000 using namespace std;int d[maxn][maxn],n,m,q; void floyd(){ f…
Floyd-Warshall算法是解决任意两点间的最短路径的一种算法,可以正确处理有向图或负权(但不可存在负权回路)的最短路径问题,同时也被用于计算有向图的传递闭包. Floyd-Warshall算法的时间复杂度为O(N^3),空间复杂度为O(N^2). Floyd-Warshall算法的原理是动态规划: 从i到j,要么是直接从i到j的,要么是从i出发经过中间节点到j的,假设中间节点有k种可能,那么只要求出这k种可能的最小值,即可得到最短路径. d[ i ][ j ]=min{ d[ i ][…
简介 最近这段时间刚好做了最短路问题的算法报告,因此对dijkstra算法也有了更深的理解,下面和大家分享一下我的学习过程. 前言 呃呃呃,听起来也没那么难,其实,真的没那么难,只要弄清楚思路就很容易了.下面正经的跟大家说下解决问题的过程. 实现过程 我们先用一个d[i]数组表示起点到点i的直接距离,然后从d[i]数组中找最小的值所对应的点,然后看点与点i之间相连的点j, 然后比较d[j]和d[i]+w[i][j](w[i][j]表示的是点i到点j之间的距离)之间的大小,然后把d[j]和d[i]…
#include<stdio.h> #include<stdlib.h> #include<stdbool.h> #define max 100 #define INF 999 struct edge{ int u; int v; int w; }e[max]; int vertex_num,edge_num; int d[max]; void relax(int u,int v,int w){ if(d[v]>d[u]+w)d[v]=d[u]+w; } bool…
Floyd算法: Floyd算法用来找出每对顶点之间的最短距离,它对图的要求是,既可以是无向图也可以是有向图,边权可以为负,但是不能存在负环(可根据最小环的正负来判定). 基本算法: Floyd算法基于动态规划的思想,以 u 到 v 的最短路径至少经过前 k 个点为转移状态进行计算,通过 k 的增加达到寻找最短路径的目的.当 k 增加 1 时,最短路径要么不边,如果改变,必经过第 k 各点,也就是说当起点 u 到第 k 个点的最短距离加上第 k 个点到终点 v 的最短路径小于不经过第 k 个节点…
单源最短路径问题:给定一个带权有向图 G = (V, E), 其中每条边的权是一个实数.另外,还给定 V 中的一个顶点,称为源.现在要计算从源到其他所有各顶点的最短路径长度.这里的长度是指路上各边权之和.这个问题通常称为单源最短路径问题. Dijkstra算法: 一:基本算法 将图 G 中所有的顶点 V 分成两个顶点集合 VA 和 VB.如果源点 S 到 u 的最短路径已经确定,则点 u 属于集合 VA ,否则属于集合  VB.最开始的时候 VA 只包含源点 S,其余的点属于 VB,算法结束时所…
时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 万圣节的中午,A和B在吃过中饭之后,来到了一个新的鬼屋!鬼屋中一共有N个地点,分别编号为1..N,这N个地点之间互相有一些道路连通,两个地点之间可能有多条道路连通,但是并不存在一条两端都是同一个地点的道路.由于没有肚子的压迫,A和B决定好好的逛一逛这个鬼屋,逛着逛着,A产生了这样的问题:鬼屋中任意两个地点之间的最短路径是多少呢? 输入 每个测试点(输入文件)有且仅有一组测试数据. 在一组测试数据中: 第1行为2个整数N…
前言 在图论中,在寻路最短路径中除了Dijkstra算法以外,还有Floyd算法也是非常经典,然而两种算法还是有区别的,Floyd主要计算多源最短路径. 在单源正权值最短路径,我们会用Dijkstra算法来求最短路径,并且算法的思想很简单-贪心算法:每次确定最短路径的一个点然后维护(更新)这个点周围点的距离加入预选队列,等待下一次的抛出确定.虽然思想很简单,实现起来是非常复杂的,我们需要邻接矩阵(表)储存长度,需要优先队列(或者每次都比较)维护一个预选点的集合.还要用一个boolean数组标记是…
SPFA算法 算法复杂度 SPFA 算法是 Bellman-Ford算法 的队列优化算法的别称,通常用于求含负权边的单源最短路径,以及判负权环. SPFA一般情况复杂度是O(m)最坏情况下复杂度和朴素 Bellman-Ford 相同,为O(nm). n为点数,m为边数 spfa也能解决权值为正的图的最短距离问题,且一般情况下比Dijkstra算法还好 算法步骤 queue <– 1 while queue 不为空 (1) t <– 队头 queue.pop() (2)用 t 更新所有出边 t…
简介 Floyd-Warshall算法(Floyd-Warshall algorithm),是一种利用动态规划的思想寻找给定的加权图中多源点之间最短路径的算法,与Dijkstra算法类似.该算法名称以创始人之一.1978年图灵奖获得者.斯坦福大学计算机科学系教授罗伯特·弗洛伊德命名. 简单的说就是解决任意两点间的最短路径的一种算法,可以正确处理有向图或负权的最短路径问题,同时也被用于计算有向图的传递闭包.Floyd-Warshall算法的时间复杂度为O(N3),空间复杂度为O(N2). 解决最短…
算法介绍 和Dijkstra算法一样,Floyd算法也是为了解决寻找给定的加权图中顶点间最短路径的算法.不同的是,Floyd可以用来解决"多源最短路径"的问题. 算法思路 算法需要引入两个二维数组ShortPathTable和Patharc.ShortPathTable表示顶点到顶点的最短路径权值和的矩阵,Patharc表示对应顶点的最小路径的前驱矩阵.在为分析任何顶点之前,ShortPathTable初始化为图的邻接矩阵. 假设图G有N个顶点,那么需要对矩阵ShortPathTabl…
个人心得:看懂题目花费了不少时间,后面实现确实时间有点仓促了,只是简单的做出了判断是否为真假的情况, 后面看了题解发现其实在判断时候其实能够一起解决的,算了,基础比较差还是慢慢的来吧. 题意概述: 就是给定一个N阶方阵,规定Auv,为u到v的最短路径,若给出的数据存在其他通路少于此时的值则不存在即为假, 解决方法就是利用Floyd算法进行单源最短路的判断,只要后面的矩阵与原来的不相符就是假的.真的的时候,是要求 存在的最短总路程使得矩阵的数成立,我画了下就是只要存在从其他城市能够转到目的地的时候…
目录 一.Floyd算法 二.Floyd算法的应用 1. 传递闭包 例1:P2881 [USACO07MAR]排名的牛Ranking the Cows 例2:P2419 [USACO08JAN]牛大赛Cow Contest 2.快速求出多源最短路 例1:P1522 牛的旅行 Cow Tours 3.解决双权值问题 例1:P1119 灾后重建 一.Floyd算法 如何求任意两点最短路?我们可以运行n次SPFA或Dijkstra求得, 而Floyd算法能在\(O(N^3)\)的时间复杂度内求出图中任…
floyd算法是多源最短路算法 也就是说,floyd可以一次跑出所以点两两之间的最短路 floyd类似动态规划 如下图: 用橙色表示边权,蓝色表示最短路 求最短路的流程是这样的: 先把点1到其他点的最短路求出 1 -> 2 的最短路是2 1 -> 3 的最短路可以由1 -> 2再由2 -> 3,2+5 = 7但1 -> 4再由4 -> 3更加短,所以1 -> 3的最短路为1+4 = 5 1 -> 4 的最短路是1 1 -> 5的最短路是3 2 也像这样…
通过dij,ford,spfa等算法可以快速的得到单源点的最短路径,如果想要得到图中任意两点之间的最短路径,当然可以选择做n遍的dij或是ford,但还有一个思维量较小的选择,就是floyd算法. 多源最短路径算法 Floyd算法 思维 先直观做个思考,一张图,任意两个点,已知两点间的路径权值,如果在图中能够找到一个点插入到这两点的路径之中,使得构成的路径权值小于之前的路径权值.就可以认为这条路比之前的路更短,这个点是属于两点间最短路径的.由此可以得到一个递推公式: \[ e[u][v]=min…
相关概念 对于一个图G=(V, E),求图中两点u, v间最短路径长度,称为图的最短路径问题.最短路径中最长的称为图的直径. 其中,求图中确定的某两点的最短路径算法,称为单源最短路径算法.求图中任意两点间的最短路径算法,称为多源最短路径算法. 常用的路径算法有: Dijkstra算法 SPFA算法\Bellman-Ford算法 Floyd算法\Floyd-Warshall算法 Johnson算法 其中最经典的是Dijkstra算法和Floyd算法.Floyd算法是多源最短路径算法,可以直接求出图…
问题描述: 最短路问题(short-path problem):若网络中的每条边都有一个数值(长度.成本.时间等),则找出两节点(通常是源节点和阱节点)之间总权和最小的路径就是最短路问题.最短路问题是网络理论解决的典型问题之一,可用来解决管路铺设.线路安装.厂区布局和设备更新等实际问题. 1.floyd算法 算法描述: Floyd算法又称为插点法,是一种用于寻找给定的加权图中多源点之间最短路径的算法.该算法名称以创始人之一.1978年图灵奖获得者.斯坦福大学计算机科学系教授罗伯特·弗洛伊德命名.…
Floyd算法 问题的提出:已知一个有向网(或者无向网),对每一对定点vi!=vj,要求求出vi与vj之间的最短路径和最短路径的长度. 解决该问题有以下两种方法: (1)轮流以每一个定点为源点,重复执行Dijkstra算法或者Bellman-Ford算法n次,就可以求出每一对顶点之间的最短路径和最短路径的长度,总的时间复杂度为O(n^3). (2)采用Floyd算法,时间复杂度也是O(n^3),但是形式更为直接. 1.介绍 floyd算法只有五行代码,代码简单,三个for循环就可以解决问题,所以…
1.单源最短路径 (1)无权图的单源最短路径 /*无权单源最短路径*/ void UnWeighted(LGraph Graph, Vertex S) { std::queue<Vertex> Q; Vertex V; PtrToAdjVNode W; Q.push(S); while (!Q.empty()) { V = Q.front(); Q.pop(); for (W = Graph->G[V].FirstEdge; W; W = W->Next) ) { dist[W-&…
什么是最短路径问题? 简单来讲,就是用于计算一个节点到其他所有节点的最短路径. 单源最短路算法:已知起点,求到达其他点的最短路径. 常用算法:Dijkstra算法.Bellman-ford算法.SPFA算法 多源最短路算法:求任意两点之间的最短路径. 常用算法:floyd算法 单源最短路径——Dijkstra Dijkstra算法是经典的最短路径算法,用于计算一个节点到其他所有节点的最短路径. 主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止. 时间复杂度:O(n^2) 处理问题:单源.…
多源最短路径是求图中任意两点间的最短路,采用动态规划算法,也称为Floyd算法.将顶点编号为0,1,2...n-1首先定义dis[i][j][k]为顶点 i 到 j 的最短路径,且这条路径只经过最大编号不超过k的顶点.于是我们最终要求的是dis[i][j][n-1].状态转移方程如下: dis[i][j][k]=min{dis[i][j][k-1],dis[i][k][k-1]+dis[k][j][k-1]}; 状态转移方程的解释:在计算dis[i][j][k]的时候,我们考虑 i 到 j 是否…
前言 在图论中,在寻路最短路径中除了Dijkstra算法以外,还有Floyd算法也是非常经典,然而两种算法还是有区别的,Floyd主要计算多源最短路径. 在单源正权值最短路径,我们会用Dijkstra算法来求最短路径,并且算法的思想很简单--贪心算法:每次确定最短路径的一个点然后维护(更新)这个点周围点的距离加入预选队列,等待下一次的抛出确定.但是虽然思想很简单,实现起来是非常复杂的,我们需要邻接矩阵(表)储存长度,需要优先队列(或者每次都比较)维护一个预选点的集合.还要用一个boolean数组…
1 Floyd算法 1.1 解决问题/提出背景 多源最短路径(带权有向图中,求每一对顶点之间的最短路径) 方案一:弗洛伊德(Floyd算法)算法 算法思想:动态规划法 时间复杂度:O(n^3) 形式上,相对较为简单 方案二:分别以图中的每个顶点为源点,共调用[n次][迪杰斯特拉(Dijkstra)算法] 算法思想:贪心算法 时间复杂度:O(n^3) 形式上,相对较为复杂 补充 Dijkstra算法主要应用于:求解[单源最短路径] 1.2 算法描述 1.3 编程复现 1> 定义图模型(邻接矩阵表示…
正如我们所知道的,Floyd算法用于求最短路径.Floyd算法可以说是Warshall算法的扩展,三个for循环就可以解决问题,所以它的时间复杂度为O(n^3). Floyd算法的基本思想如下:从任意节点A到任意节点B的最短路径不外乎2种可能,1是直接从A到B,2是从A经过若干个节点X到B.所以,我们假设Dis(AB)为节点A到节点B的最短路径的距离,对于每一个节点X,我们检查Dis(AX) + Dis(XB) < Dis(AB)是否成立,如果成立,证明从A到X再到B的路径比A直接到B的路径短,…
弗洛伊德(Floyd)算法是一种用于寻找给定的加权图中顶点间最短路径的算法.该算法名称以创始人之一.1978年图灵奖获得者.斯坦福大学计算机科学系教授罗伯特·弗洛伊德命名. 基本思想 通过Floyd计算图G=(V,E)中各个顶点的最短路径时,需要引入一个矩阵S,矩阵S中的元素a[i][j]表示顶点i(第i个顶点)到顶点j(第j个顶点)的距离. 假设图G中顶点个数为N,则需要对矩阵S进行N次更新.初始时,矩阵S中顶点a[i][j]的距离为顶点i到顶点j的权值:如果i和j不相邻,则a[i][j]=∞…
Floyd算法: 如何简单方便的求出图中任意两点的最短路径 Floyd-Warshall算法(O(n)比较适用于边较多的稠密图(Dense Graph)) Floyd算法用来找出每对顶点之间的最短距离,它对图的要求是,既可以是无向图也可以是有向图,边权可以为负,但是不能存在负环(可根据最小环的正负来判定). 思想: Floyd算法基于动态规划的思想,以 u 到 v 的最短路径至少经过前 k 个点为转移状态进行计算,通过 k 的增加达到寻找最短路径的目的.当 k 增加 1 时,最短路径要么不边,如…
一.Floyd算法本质 首先,关于Floyd算法: Floyd-Warshall算法是一种在具有正或负边缘权重(但没有负周期)的加权图中找到最短路径的算法.算法的单个执行将找到所有顶点对之间的最短路径的长度(加权). 通俗一点说,Floyd就是可以用于求解多源汇最短路径的算法,也就是求连通图中任意两点间的最短路径,当然,如果不连通,它返回的就是无穷大(初始化为无穷大).Floyd可以处理负权,但无法处理有负权环的图. 接下去进入正题: 众所周知,Floyd算法本质其实是动态规划.它其实是由三维数…
最短路算法(一) 最短路算法有三种形态:Floyd算法,Shortset Path Fast Algorithm(SPFA)算法,Dijkstra算法. 我个人打算分三次把这三个算法介绍完. (毕竟写太长了又没有人看QAQ……)但是这篇博客好像又双叒叕写的有点长,真的请各位耐心看完QAQ 今天先来介绍最简单的Floyd算法. Part 1:最短路问题是什么? 我们用专业一点的术语表达,大概是这样子的: 若网络中的每条边都有一个数值(长度.成本.时间等),则找出两节点(通常是源节点和阱节点)之间总…
原文链接:http://www.cnblogs.com/biyeymyhjob/archive/2012/07/31/2615833.html 最后边附有我根据文中Dijkstra算法的描述使用java写的算法实现. Dijkstra算法 1.定义概览 Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径.主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止.Dijkstra算法是很有代表性的最短路径算法,在很多专业课程中都作为基本内容有详细的…