kafka写入hdfs】的更多相关文章

碰到的问题 (1)线程操作问题,因为单机节点,代码加锁就好了,后续再写 (2) 消费者写hdfs的时候以流的形式写入,但是什么时候关闭流就是一个大问题了,这里引入了   fsDataOutputStream.hsync(); hsync 保证 hdfs在写数据的时候被新的reader读到,保证数据被datanode持久化 生产者 package com.xuliugen.kafka.demo; import org.apache.kafka.clients.producer.KafkaProdu…
一. 概述 在大数据的静态数据处理中,目前普遍采用的是用Spark+Hdfs(Hive/Hbase)的技术架构来对数据进行处理. 但有时候有其他的需求,需要从其他不同数据源不间断得采集数据,然后存储到Hdfs中进行处理.而追加(append)这种操作在Hdfs里面明显是比较麻烦的一件事.所幸有了Storm这么个流数据处理这样的东西问世,可以帮我们解决这些问题. 不过光有Storm还不够,我们还需要其他中间件来协助我们,让所有其他数据源都归于一个通道.这样就能实现不同数据源以及Hhdfs之间的解耦…
强大的功能,丰富的插件,让logstash在数据处理的行列中出类拔萃 通常日志数据除了要入ES提供实时展示和简单统计外,还需要写入大数据集群来提供更为深入的逻辑处理,前边几篇ELK的文章介绍过利用logstash将kafka的数据写入到elasticsearch集群,这篇文章将会介绍如何通过logstash将数据写入HDFS 本文所有演示均基于logstash 6.6.2版本 数据收集 logstash默认不支持数据直接写入HDFS,官方推荐的output插件是webhdfs,webhdfs使用…
原文链接:spark读取 kafka nginx网站日志消息 并写入HDFS中 spark 版本为1.0 kafka 版本为0.8 首先来看看kafka的架构图 详细了解请参考官方 我这边有三台机器用于kafka 日志收集的 A 192.168.1.1 为server B 192.168.1.2 为producer C 192.168.1.3 为consumer 首先在A上的kafka安装目录下执行如下命令 ./kafka-server-start.sh ../config/server.pro…
1. 解析参数工具类(ParameterTool) 该类提供了从不同数据源读取和解析程序参数的简单实用方法,其解析args时,只能支持单只参数. 用来解析main方法传入参数的工具类 public class ParseArgsKit { public static void main(String[] args) { ParameterTool parameters = ParameterTool.fromArgs(args); String host = parameters.getRequ…
作者:Syn良子 出处:http://www.cnblogs.com/cssdongl 转载请注明出处 找时间总结整理了下数据从Kafka到Hdfs的一些pipeline,如下 1> Kafka -> Flume –> Hadoop Hdfs 常用方案,基于配置,需要注意hdfs小文件性能等问题. GitHub地址:  https://github.com/apache/flume 2> Kafka -> Kafka Hadoop Loader ->Hadoop Hdf…
在基于Hadoop平台的很多应用场景中,我们需要对数据进行离线和实时分析,离线分析可以很容易地借助于Hive来实现统计分析,但是对于实时的需求Hive就不合适了.实时应用场景可以使用Storm,它是一个实时处理系统,它为实时处理类应用提供了一个计算模型,可以很容易地进行编程处理.为了统一离线和实时计算,一般情况下,我们都希望将离线和实时计算的数据源的集合统一起来作为输入,然后将数据的流向分别经由实时系统和离线分析系统,分别进行分析处理,这时我们可以考虑将数据源(如使用Flume收集日志)直接连接…
转载自http://www.tuicool.com/articles/NzyqAn 在基于Hadoop平台的很多应用场景中,我们需要对数据进行离线和实时分析,离线分析可以很容易地借助于Hive来实现统计分析,但是对于实时的需求Hive就不合适了.实时应用场景可以使用Storm,它是一个实时处理系统,它为实时处理类应用提供了一个计算模型,可以很容易地进行编程处理.为了统一离线和实时计算,一般情况下,我们都希望将离线和实时计算的数据源的集合统一起来作为输入,然后将数据的流向分别经由实时系统和离线分析…
一. 概述 上一篇我们介绍了如何将数据从mysql抛到kafka,这次我们就专注于利用storm将数据写入到hdfs的过程,由于storm写入hdfs的可定制东西有些多,我们先不从kafka读取,而先自己定义一个Spout数据充当数据源,下章再进行整合.这里默认你是拥有一定的storm知识的基础,起码知道Spout和bolt是什么. 写入hdfs可以有以下的定制策略: 自定义写入文件的名字 定义写入内容格式 满足给定条件后更改写入的文件 更改写入文件时触发的Action 本篇会先说明如何用sto…
概述 Kafka 的数据如何传输到HDFS?如果仔细思考,会发现这个问题并不简单. 不妨先想一下这两个问题? 1)为什么要将Kafka的数据传输到HDFS上? 2)为什么不直接写HDFS而要通过Kafka? HDFS一直以来是为离线数据的存储和计算设计的,因此对实时事件数据的写入并不友好,而Kafka生来就是为实时数据设计的,但是数据在Kafka上无法使用离线计算框架来作批量离线分析. 那么,Kafka为什么就不能支持批量离线分析呢?想象我们将Kafka的数据按天拆分topic,并建足够多的分区…