[ NOIP 2002 ] TG】的更多相关文章

\(\\\) \(\#A\) 均分纸牌 有\(N\)堆纸牌,每堆有若干张,但纸牌总数必为\(N\)的倍数.可以在任一堆上取若干张纸牌,然后移动给其左右任意一侧的纸牌堆,求将所有的牌堆牌数都变为平均值最少移动次数. \(N\in [0,100]\) 把所有数减掉平均数,自左往右扫描,只要当前数不为\(0\),就将这个数加给右侧的数,累加计数器. 如果加上了一个负数,代表从右侧的堆移动给了左侧,正数则相反. #include<cmath> #include<cstdio> #inclu…
1008 选数 2002年NOIP全国联赛普及组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题目描述 Description 已知 n 个整数 x1,x2,…,xn,以及一个整数 k(k<n).从 n 个整数中任选 k 个整数相加,可分别得到一系列的和.例如当 n=4,k=3,4 个整数分别为 3,7,12,19 时,可得全部的组合与它们的和为: 3+7+12=22 3+7+19=29 7+12+19=38 3+12+19=34. 现在,要求你计算出和为素…
题目描述 已知有两个字串 A, B 及一组字串变换的规则(至多6个规则): A1 -> B1 A2 -> B2 规则的含义为:在 A$中的子串 A1 可以变换为 B1.A2 可以变换为 B2 -. 例如:A='abcd'B='xyz' 变换规则为: 'abc'->'xu''ud'->'y''y'->'yz' 则此时,A 可以经过一系列的变换变为 B,其变换的过程为: 'abcd'->'xud'->'xy'->'xyz' 共进行了三次变换,使得 A 变换为B.…
\(\\\) \(Day\ 1\) \(\\\) \(\#\ A\) \(Rps\) 定义五种方案的石头剪刀布游戏,两人共进行\(N\)局游戏,已知两人各自的循环节和具体方案,胜者得\(1\)分,败者或平局均不得分,求\(N\)局后两人得分. \(N\in [0,200]\) 将二维的计分表填满,模拟. #include<cmath> #include<cstdio> #include<cctype> #include<cstring> #include&l…
题目描述 如图,A 点有一个过河卒,需要走到目标 B 点.卒行走规则:可以向下.或者向右.同时在棋盘上的任一点有一个对方的马(如上图的C点),该马所在的点和所有跳跃一步可达的点称为对方马的控制点.例如上图 C 点上的马可以控制 9 个点(图中的P1,P2 … P8 和 C).卒不能通过对方马的控制点. 棋盘用坐标表示,A 点(0,0).B 点(n,m)(n,m 为不超过 20 的整数,并由键盘输入),同样马的位置坐标是需要给出的(约定: C<>A,同时C<>B).现在要求你计算出卒…
65. [NOIP2002] 字串变换 ★★   输入文件:string.in   输出文件:string.out   简单对比时间限制:1 s   内存限制:128 MB [问题描述] 已知有两个字串A\$, B\$及一组字串变换的规则(至多6个规则): A1\$ -> B1\$ A2\$ -> B2\$ 规则的含义为:在A\$中的子串A1\$可以变换为B1\$.A2\$可以变换为B2\$…. 例如:A\$='abcd'  B\$='xyz' 变换规则为:‘abc’->‘xu’ ‘ud…
题目描述 棋盘上AAA点有一个过河卒,需要走到目标BBB点.卒行走的规则:可以向下.或者向右.同时在棋盘上CCC点有一个对方的马,该马所在的点和所有跳跃一步可达的点称为对方马的控制点.因此称之为“马拦过河卒”. 棋盘用坐标表示,AAA点(0,0)(0, 0)(0,0).BBB点(n,m)(n, m)(n,m)(nnn, mmm为不超过202020的整数),同样马的位置坐标是需要给出的. 现在要求你计算出卒从AAA点能够到达BBB点的路径的条数,假设马的位置是固定不动的,并不是卒走一步马走一步.…
\(\\\) \(\#A\) \(Word\) 给出一个长为\(N\)的小写字母串,判断出现所有字母中最多出现次数减最少出现次数得到的答案是否是质数. \(N\in [1,100]\) 直接按题意开桶记录,试除法判断即可. #include<cmath> #include<cstdio> #include<cctype> #include<cstring> #include<cstdlib> #include<iostream> #i…
\(\\\) \(\#A\) 车站 火车从第\(1\)站开出,上车的人数为\(a\),然后到达第\(2\)站,在第\(2\)站有人上.下车,但上.下车的人数相同,因此在第\(2\)站开出时(即在到达第\(3\)站之前)车上的人数保持为\(a\)人.从第\(3\)站起(包括第\(3\)站)上.下车的人数有一定规律:上车的人数都是前两站上车人数之和,而下车人数等于上一站上车人数,一直到第\(n-1\)站,都满足此规律. 共有\(N\)个车站,始发站上车的人数为\(a\),最后一站下车的人数是\(m\…
\(\\\) \(\#A\) \(Spy\) 给出两个长度均为\(N\)相同的样例串,建立第一个串各个字符向第二个串对应位置字符的映射,并用映射转换给出的长度为\(M\)第三个串,输入保证只有大写字符. 若出现\(26\)个大写字符未建立完整,映射一些字符映射所得字符相同或同一个字符建立多个映射,则视为不合法,输出\("failed"\).否则,输出转换后的串. \(N,M\in [1,100]\) 字符串处理题,开三个数组分别记录两个样例串每个字符是否出现,以即映射. 在建立映射时,…