题目描述 JOI 铁路公司是 JOI 国唯一的铁路公司. 在某条铁路沿线共有 $N$ 座车站,依次编号为 $1...N$. 目前,正在服役的车次按照运行速度可分为两类:高速电车(简称快车)与普通电车(简称慢车). 慢车每站都停.乘慢车时,对于任意一座车站 $i(1⩽i<N)$,车站 $i$ 到车站$ i+1$ 用时均为 $A$. 快车只在车站 $S_1, S_2, \ldots, S_M$​​ 停车 $(1=S_1<S_2<\cdots<S_M=N)$.乘快车时,对于任意一座车站…
题目链接 题目描述 JOIOI 王国是一个 $H$ 行 $W$ 列的长方形网格,每个 $1\times 1$ 的子网格都是一个正方形的小区块.为了提高管理效率,我们决定把整个国家划分成两个省 $JOI$ 和 $IOI$ . 我们定义,两个同省的区块互相连接,意为从一个区块出发,不用穿过任何一个不同省的区块,就可以移动到另一个区块.有公共边的区块间可以任意移动.我们不希望划分得过于复杂,因此划分方案需满足以下条件: 区块不能被分割为两半,一半属 $JOI$ 省,一半属 $IOI$ 省. 每个省必须…
「JOI 2017 Final」JOIOI 王国 题目描述 题目译自 JOI 2017 Final T3「 JOIOI 王国 / The Kingdom of JOIOI」 JOIOI 王国是一个 HHH 行 WWW 列的长方形网格,每个 1×11\times 11×1 的子网格都是一个正方形的小区块.为了提高管理效率,我们决定把整个国家划分成两个省 JOI 和 IOI . 我们定义,两个同省的区块互相连接,意为从一个区块出发,不用穿过任何一个不同省的区块,就可以移动到另一个区块.有公共边的区块…
题目传送门 这道题开始看起来会很晕...\(qwq\).首先我们要明确题目中的海拔&&温度.温度是受海拔影响的,每次改变的是海拔,我们求的是温度. 我们开始读入的时候便可以处理出开始\(N\)位置的温度以及各个位置的海拔差.每次读入影响的是一段区间,区间内的相对海拔是不变的因此温度也不会变.只有区间的边界可能受到影响.因此我们只要处理边界就行了:这便是差分的思想. 比如有\([l,r]\)区间需要处理,那么我们把\(l\)位置的原答案减去,把\(l\)位置的海拔改变,并加上新答案.再对\(…
loj 首先,所有位置最多被染色一次,因为要染多次的话,还不如一开始就染成最终的颜色.并且你可以一开始就染好色 因为最终长度为2,那么如果染完后这个序列可以被折完,那么首先最多只有两种颜色,还有就是要满足对于所有同色极大联通块长度都要是偶数,不过第一个和最后一个长度可以为奇数 证明的话,先证充分条件,即这样子一定合法.可以搞出一个方法,每次只操作后面.先把最后面一个连通块长度缩成1(这样一定最优),然后因为接下来一个连通块长度为偶数,所以可以把接下来那个轴对称翻过去,然后重复这个操作直到长度为2…
分析 二分答案 判断左上角是否满足 为了覆盖所有范围 我们依次把右下角,左上角,右上角移动到左上角 代码 #include<bits/stdc++.h> using namespace std; ][],n,m,Ans=1e9+,mx,mn=1e9+; inline bool ck(int x){ int i,j,k,l=mn+x,r=mx-x,lim=m; ;i<=n;i++){ ;j<=lim;j++) if(a[i][j]<r)break; lim=min(lim,j-…
分析 我们发现到达一个点一定是先快车再准快车再慢车 于是快车将1-n分为多个区间 每次取出每个区间当前能到达的点的数量 选剩余时间贡献最大的的一个取得贡献并且再能到达的最远点建立准快车 代码 #include<bits/stdc++.h> using namespace std; #define int long long ],t[],now[],Ans; priority_queue<int>q; signed main(){ int i,j,k; scanf("%ll…
分析 我们发现改变一个区间实际上只有两个端点的贡献变换 代码 #include<bits/stdc++.h> using namespace std; #define int long long ],s[],x,y,z,n,m,q,i,j,k,Ans=; signed main(){ scanf(],&s[]); ;i<=n;i++)scanf("%lld",&a[i]); ;i--)a[i]-=a[i-],Ans-=a[i]*s[a[i]>];…
题意 loj 做法 首先我们观察到最后能折起来的充要条件是: 只有两个颜色,除首尾外,所有颜色块内的数量为偶数 因为为偶数,我们进一步推论: 所有颜色块起始位置奇偶性相同 然后因为增与减都会有相同花费,不失一般性,只考虑将必须保留的\(c\)增加更多的位置 而增加的位置只在\(c\)颜色块的两边 分类讨论起始位置的奇偶性即可…
题面 题解 我们可以总结出球的两种状态,要么自己飞,要么在球员脚下被带飞. 自己飞的情况下,他只能单向直线运动,每一步代价为A,被带飞可以乱走,每一步代价为C. 从自己飞到被带飞需要一个距离自己最近的球员过来,代价为 ,对于每个格点,这个代价都是确定的,因为球不可能两次到同一个球员脚下,所以球员就相当于一次性的工具人,输入后bfs处理 就可以了. 从被带飞到自己飞需要踢一脚,给它自由,代价为B. 那么我们可以把每个格点拆成5个点,然后建个图. 自己飞要四个点,分别表示四个方向,每个点朝那个方向的…