codevs1213 解的个数】的更多相关文章

题目描述 Description 已知整数x,y满足如下面的条件: ax+by+c = 0 p<=x<=q r<=y<=s 求满足这些条件的x,y的个数. 输入描述 Input Description 第一行有一个整数n(n<=10),表示有n个任务.n<=10 以下有n行,每行有7个整数,分别为:a,b,c,p,q,r,s.均不超过108. 输出描述 Output Description 共n行,第i行是第i个任务的解的个数. 样例输入 Sample Input 2…
题目描述 Description 已知整数x,y满足如下面的条件: ax+by+c = 0 p<=x<=q r<=y<=s 求满足这些条件的x,y的个数. 输入描述 Input Description 第一行有一个整数n(n<=10),表示有n个任务.n<=10 以下有n行,每行有7个整数,分别为:a,b,c,p,q,r,s.均不超过108. 输出描述 Output Description 共n行,第i行是第i个任务的解的个数. 样例输入 Sample Input 2…
codevs 1213 解的个数  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold 题目描述 Description 已知整数x,y满足如下面的条件: ax+by+c = 0 p<=x<=q r<=y<=s 求满足这些条件的x,y的个数. 输入描述 Input Description 第一行有一个整数n(n<=10),表示有n个任务.n<=10 以下有n行,每行有7个整数,分别为:a,b,c,p,q,r,s.均不超过108. 输出描…
设方程x1+x2+x3+...+xn = m(m是常数) 这个方程的非负整数解的个数有(m+n-1)!/((n-1)!m!),也就是C(n+m-1,m). 具体解释就是m个1和n-1个0做重集的全排列问题.…
1213 解的个数 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold       题目描述 Description 已知整数x,y满足如下面的条件: ax+by+c = 0 p<=x<=q r<=y<=s 求满足这些条件的x,y的个数. 输入描述 Input Description 第一行有一个整数n(n<=10),表示有n个任务.n<=10 以下有n行,每行有7个整数,分别为:a,b,c,p,q,r,s.均不超过108. 输出描述 Ou…
1213 解的个数 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题目描述 Description 已知整数x,y满足如下面的条件: ax+by+c=0 p<=x<=q r<=y<=s 求满足这些条件的x,y的个数. 输入描述 Input Description 第一行有一个整数n(n<=10),表示有n个任务.n<=10 以下有n行,每行有7个整数,分别为:a,b,c,p,q,r,s.均不超过108. 输出描述 Output Des…
题目描述 给出一个正整数N,请你求出x+y+z=N这个方程的正整数解的组数(1<=x<=y<=z<1000).其中,1<=x<=y<=z<=N . 输入格式 一行一个正整数N(1<=N<=1000). 输出格式 一行一个整数,表示方程组解的个数 样例输入 5 样例输出 2…
X问题 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 5974    Accepted Submission(s): 2053 Problem Description 求在小于等于N的正整数中有多少个X满足:X mod a[0] = b[0], X mod a[1] = b[1], X mod a[2] = b[2], …, X mod…
这一场两个和大数有关的题目,都用到了米勒拉宾算法,有点东西,备忘一下. 题目传送门 F. Divisions 传送门 这个题是求一个数的所有因子个数,但是数据比较大,1e18,所以是大数的题目,正常的求因数的或者求质因数的都过不了,因为这一场的K是米勒拉宾判大素数,先过的K题,所以这个题直接头铁用Miller_Rabin+Pollard_rho这两个东西+因子个数求解公式写过去了. 这两个算法的具体原理不清楚.从别人那里知道了一点. Miller_Rabin算法的作用是判断一个数是否是个素数,算…
题意:      x^z + y^z + x*y*z = k; (x < y ,z > 1),给你一个k问有多少组解. 思路:        暴力枚举z,y,然后二分查找x.注意一点最好用快速幂,别用pow,不然有可能会超时,如果先把z=2的处理了会快一点.应该会0ms..... #include<stdio.h> __int64 quickp(__int64 a,__int64 n) { __int64 aa=1; while(n) { if(n&1) aa*=a; a*…
1043: Fixed Point 时间限制: 5 Sec  内存限制: 128 MB 提交: 26  解决: 5 [提交][状态][讨论版] 题目描述 In mathematics, a fixed point (sometimes shortened to fixpoint, also known as an invariant point) of a function is a point that is mapped to itself by the function. That is…
#include<iostream> #include<cstdio> #include<cstring> using namespace std; int T,x,y,ans,g,l1,r1,l2,r2; int init() { ;; ;s=getchar();} +s-';s=getchar();} if(f)return -x;return x; } void E_gcd(int a,int b) { ) { x=;y=;g=a; } else { E_gcd(…
很不错的题,加深了我对exgcd的理解 (以前我认为做题就是搜索.dp...原来数学也很重要) 理解了几个小时,终于明白了.但我什么都不打算写. 看代码吧: #include<iostream> using namespace std; int exgcd(int a,int b,int& x,int&y){//扩展欧几里得 ){ x=; y=; return a; } int x2,y2; int d=exgcd(b,a%b,x2,y2); x=y2; y=x2-(a/b)*…
求方程:的解个数 分析:设,那么上述方程解的个数就与同余方程组:的解等价. 设同于方程的解分别是:,那么原方程的解的个数就是 所以现在的关键问题是求方程:的解个数. 这个方程我们需要分3类讨论: 第一种情况: 对于这种情况,如果方程的某个解设为,那么一定有,可以得到,即 所以方程的解个数就是:,也就是 第二种情况: 这样也就是说p|B,设,,本方程有解的充要条件是A|t, 那么我们设t=kA, 所以进一步有:,因为,这样又转化为第三种情况了. 第三种情况: 那么我们要求指标:求指标的话又要求原根…
题意:求解方程ax+by+c=0,在区间x1->x2和y1->y2的解的个数. 看似简单,真心a的不容易啊! 开始跪于第8组数据,原因是没用long long !后来改了,跪于12组,超时,于是,换方法,求出x的解,对应到y ,然后算在y1,y2的解有几个(不要用枚举法,算有几个就行).竟然又跪于第4组数据!!哎,弱爆了. 才发现,x对应过去的y,x递增,y未必也递增,也未必递减啊!! 做线方程总结: 先判断有无解,再约分后得 ax+by=c,用扩展欧几里得求得ax+by=1的一解,x=x*c…
/*====================================================================== 题目描述 输入二个正整数x0,y0(2<=x0<100000,2<=y0<=1000000),求出满足下列条件的P,Q的个数 条件: 1.P,Q是正整数 2.要求P,Q以x0为最大公约数,以y0为最小公倍数. 试求:满足条件的所有可能的两个正整数的个数. 输入描述 Input Description 二个正整数x0,y0 输出描述 Out…
先给出我所参考的两个链接: http://hi.baidu.com/aekdycoin/item/236937318413c680c2cf29d4 (AC神,数论帝  扩展Baby Step Giant Step解决离散对数问题) http://blog.csdn.net/a601025382s/article/details/11747747 Baby Step Giant Step算法:复杂度O( sqrt(C) ) 我是综合上面两个博客,才差不多懂得了该算法. 先给出AC神的方法: 原创帖…
将式子变形为 ax-c=my 可以看出原式有解当且仅当线性方程ax-my=c有解 设g = gcd(a, m) 则所有形如ax-my的数都是g的倍数 因此如果g不整除c则原方程无解. 下面假设g整除c: 利用扩展欧几里得算法解出 au + mv =g 一个特解(u0, v0) 所以可用整数c/g乘上上式 au0*(c/g) + mv0*(c/g) = c 得到原式的解x0 = u0*(c/g) 解的个数: 假设x1是ax ≡ c(mod m)的其他解 ax1 ≡ ax2(mod m),所以m整除…
N皇后问题是一个经典的问题,在一个N*N的棋盘上放置N个皇后,每行一个并使其不能互相攻击(同一行.同一列.同一斜线上的皇后都会自动攻击). 一. 求解N皇后问题是算法中回溯法应用的一个经典案例 回溯算法也叫试探法,它是一种系统地搜索问题的解的方法.回溯算法的基本思想是:从一条路往前走,能进则进,不能进则退回来,换一条路再试. 在现实中,有很多问题往往需要我们把其所有可能穷举出来,然后从中找出满足某种要求的可能或最优的情况,从而得到整个问题的解.回溯算法就是解决这种问题的"通用算法",有…
高斯消元法,是线性代数中的一个算法,可用来求解线性方程组,并可以求出矩阵的秩,以及求出可逆方阵的逆矩阵.高斯消元法的原理是:若用初等行变换将增广矩阵 化为 ,则AX = B与CX = D是同解方程组. 所以我们可以用初等行变换把增广矩阵转换为行阶梯阵,然后回代求出方程的解. 1.线性方程组 1)构造增广矩阵,即系数矩阵A增加上常数向量b(A|b) 2)通过以交换行.某行乘以非负常数和两行相加这三种初等变化将原系统转化为更简单的三角形式(triangular form) 注:这里的初等变化可以通过…
http://acm.hdu.edu.cn/showproblem.php?pid=6397 原问题的本质是问m个元素的多重集S,每一种类型的对象至多出现n-1次的S的k组合的个数是多少? 等价于 x1+x2+...+xm=k  0<xi<=n-1  的解的个数 当xi没有上限(xi<=n-1)时由隔板法得C(k+m-1,m-1) 而有上限时,方法是构造母函数(1+x+....+x^(n-1))^m  答案是x^k的系数 对母函数用等比数列求和再二项式展开加泰勒展开得答案.orz(解法来…
先跪一发题目背景QAQ 显然x,y>n!,然后能够设y=n!+d 原式子能够化简成 x=n!2d+n! 那么解的个数也就是n!的因子个数,然后线性筛随便搞一搞 #include<cstdio> #include<cstdlib> #include<cstring> #include<cmath> #include<queue> #include<vector> #include<set> #include<ma…
一.题目链接 https://www.nowcoder.com/acm/contest/90/F 二.题面 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 32768K,其他语言65536K 64bit IO Format: %lld 题目描述 给定n,求1/x + /y = /n (x<=y)的解数.(x.y.n均为正整数) 输入描述: 在第一行输入一个正整数T. 接下来有T行,每行输入一个正整数n,请求出符合该方程要求的解数. (<=n<=1e9) 输出描述: 输出符…
求一个n元一次方程的解,Gauss消元 const Matrix=require('./Matrix.js') /*Gauss 消元 传入一个矩阵,传出结果 */ function Gauss(matrix){ let l=[];//是否为自由元 let ans=[];//存储解 const n=matrix.Column-1;//解的个数 const EPS=0.00001; let res=0,r=0; for(let i=0;i<matrix.Column;i++){ for(let j=…
/************************************* 求解x^a=b(mod c) x在[0,c-1]上解的个数模板 输入:1e9>=a,b>=1,1e9>=c>=3. 返回:调用xaeqbmodc(a,b,c),返回解的个数 复杂度: 找原根的复杂度很低,所以总的复杂度为O(c^0.5) ************************************/ typedef long long ll; #define HASH_N 100007 str…
题目传送门 题意:求高次方程的解及其个数.其中 1° 我们知道,高次方程是没有求根公式的.但是利用逆向思维,我们可以进行“试根法”,因为题目中给出了所求根的范围.但是多项式系数过于吓人,达到了sxbk的1e10000.longlong显然盛不下.只能看做字符串处理.然而即使是处理成字符串,我们也不可能真的去乘这么多. 2° 考虑取膜.我们把多项式系数进行取膜,它的相对效果和不取膜是一样的.(想一想,为什么) 除了对系数取膜,我们还可以考虑对x取膜. - 如果 X 真的是一个根,那么取模后肯定是…
[学习笔记]薛定谔的喵咪Cat-球盒问题(全详解) [题目描述] 当一个猫在盒子里时,因为放射物的状态我们不知道,所以猫的状态我们也不知道,这就所谓猫的生死纠缠态,也是所谓的薛定谔的猫. 当我们做需要大量实验时,就需要统计猫的个数与盒子的数量,以及之间的关系.因为实验情况不同,所以我们要研究的模型也不尽相同.我们用 \(opt\) 表示. \(opt = 1:\) 猫的颜色不同,盒子的颜色不同,允许盒子为空. \(opt = 2:\) 猫的颜色相同,盒子的颜色不同,不许盒子为空. \(opt =…
P2312 解方程 题目描述 已知多项式方程: \[a_0+a_1x+a_2x^2+\cdots+a_nx^n=0\] 求这个方程在 [1,m][1,m] 内的整数解(\(n\) 和 \(m\) 均为正整数). 输入格式 输入共 $ n + 2$ 行. 第一行包含 \(2\) 个整数 \(n, m\) ,每两个整数之间用一个空格隔开. 接下来的 \(n+1\) 行每行包含一个整数,依次为 \(a_0,a_1,a_2\ldots a_n\). 输出格式 第一行输出方程在 [1,m][1,m] 内的…
题目描述 给出一个二元一次方程$ax+by=c$,其中$x$.$y$是未知数,求它的正整数解的数量. 输入格式 第一行一个整数$T$,表示有$T$组数据.接下来$T$行,每行$3$个整数$a$.$b$.$c$. 输出格式 输出$T$行,每行一个数,表示方程解的数量.如果正整数解的数量比$65535$还多,输出$“ZenMeZheMeDuo”$. 样例 样例输入: 3-1 -1 -31 1 655361 1 65537 样例输出: 265535ZenMeZheMeDuo 数据范围与提示 $20\%…
乍一看还以为是道水题,没想到这玩意这么难搞. 看题显然是exgcd,然而exgcd求的是一个解而不是解的个数(考试的时候不记得通解的式子然后挂了). 对于40%的数据,直接枚举计数即可. 对于另为20%,a+b=c,puts("1"); 这60分差不多是送的. 剩下的就是比较恶心的了: 先讨论都是正数的情况:$ax+by=c$,exgcd可以求$ax+by=gcd(a,b)$的解x0,y0,设t=c/gcd(a,b);则$a*tx_0+b*ty_0=t*gcd(a,b)=c$. 那么我…