题目描述 for i=1 to n for j=1 to n sum+=gcd(i,j) 给出n求sum. gcd(x,y)表示x,y的最大公约数. 输入输出格式 输入格式: n 输出格式: sum 输入输出样例 输入样例#1: 2 输出样例#1: 5 说明 数据范围 30% n<=3000 60% 7000<=n<=7100 100% n<=100000 题目的意思大概是这样的 O(n2)枚举当然是不行的啦. 考虑枚举k,求gcd为k的“数对”的个数. 而可以证明gcd为k的“数…
题目地址 题目链接 题目描述 for i=1 to n for j=1 to n sum+=gcd(i,j) 给出n求sum. gcd(x,y)表示x,y的最大公约数. 输入输出格式 输入格式: n 输出格式: sum 输入输出样例 输入样例#1: 复制 2 输出样例#1: 复制 5 说明 数据范围 30% n<=3000 60% 7000<=n<=7100 100% n<=100000 题解 这东西其实就是\(\large\sum_{i=1}^n\sum_{j=1}^ngcd(i…
题目传送门 GCD SUM 题目描述 for i=1 to n for j=1 to n sum+=gcd(i,j) 给出n求sum. gcd(x,y)表示x,y的最大公约数. 输入输出格式 输入格式: n 输出格式: sum 输入输出样例 输入样例#1: 2 输出样例#1: 5 说明 数据范围 30% n<=3000 60% 7000<=n<=7100 100% n<=100000 分析: 无聊的出题人出的无聊的数学题. 这里博主用了一种比较暴力的思想,直接枚举以$1\thick…
题目描述 for i=1 to n for j=1 to n sum+=gcd(i,j) 给出n求sum. gcd(x,y)表示x,y的最大公约数. 输入输出格式 输入格式: n 输出格式: sum 输入输出样例 输入样例#1: 2 输出样例#1: 5 说明 数据范围 30% n<=3000 60% 7000<=n<=7100 100% n<=100000 分析:求sum我们不可能把所有gcd全部求出来,但是有很多一样的gcd,因此我们可以统计每个gcd的个数,如gcd=k的倍数的…
洛谷P2398 GCD SUM 题目描述 for i=1 to n for j=1 to n sum+=gcd(i,j) 给出n求sum. gcd(x,y)表示x,y的最大公约数. 输入输出格式 输入格式: n 输出格式: sum 输入输出样例 输入样例#1: 2 输出样例#1: 5 说明 数据范围 30% n<=3000 60% 7000<=n<=7100 100% n<=100000 Solution 这道题的做法貌似很多...如果你同时会狄利克雷卷积和莫比乌斯反演的话也可以强…