Tensorflow细节-P212-循环神经网络】的更多相关文章

本节的循环神经网络一图足以说明 import numpy as np X = [1, 2] state = [0.0, 0.0] # 定义RNN的参数 # 以下两个本来是像这样分开的,但是在运算时合并了 w_cell_state = np.asarray([[0.1, 0.2], [0.3, 0.4]]) w_cell_input = np.asarray([0.5, 0.6]) b_cell = np.asarray([0.1, -0.1]) w_output = np.asarray([[1…
1.本节多为复习内容,从以下图片可见一般: 2.学会使用 from numpy.random import RandomState 然后 rdm = RandomState(1) dataset_size = 128 X = rdm.rand(dataset_size, 2) Y = [[(x1 + x2) + rdm.rand() / 10.0-0.05] for(x1, x2) in X] 进行赋值的时候就可以不变了 import tensorflow as tf from numpy.ra…
MNIST 卷积神经网络.https://github.com/nlintz/TensorFlow-Tutorials/blob/master/05_convolutional_net.py .TensorFlow搭建卷积神经网络(CNN)模型,训练MNIST数据集. 构建模型. 定义输入数据,预处理数据.读取数据MNIST,得到训练集图片.标记矩阵,测试集图片标记矩阵.trX.trY.teX.teY 数据矩阵表现.trX.teX形状变为[-1,28,28,1],-1 不考虑输入图片数量,28x…
循环神经网络.https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/recurrent_network.py. 自然语言处理(natural language processing, NLP)应用网络模型.与前馈神经网络(feed-forward neural network,FNN)不同,循环网络引入定性循环,信号在神经元传递不消失继续存活.传统神经网络层间全连接,层…
1.导入依赖包,初始化一些常量 import collections import numpy as np import tensorflow as tf TRAIN_DATA = "./data/ptb.train.txt" # 训练数据路径 TEST_DATA = "./data/ptb.test.txt" # 测试数据路径 EVAL_DATA = "./data/ptb.valid.txt" # 验证数据路径 HIDDEN_SIZE = 3…
包括卷积神经网络(CNN)在内的各种前馈神经网络模型, 其一次前馈过程的输出只与当前输入有关与历史输入无关. 递归神经网络(Recurrent Neural Network, RNN)充分挖掘了序列数据中的信息, 在时间序列和自然语言处理方面有着重要的应用. 递归神经网络可以展开为普通的前馈神经网络: 长短期记忆模型(Long-Short Term Memory)是RNN的常用实现. 与一般神经网络的神经元相比, LSTM神经元多了一个遗忘门. LSTM神经元的输出除了与当前输入有关外, 还与自…
一.循环神经网络简介 循环神经网络的主要用途是处理和预测序列数据.循环神经网络刻画了一个序列当前的输出与之前信息的关系.从网络结构上,循环神经网络会记忆之前的信息,并利用之前的信息影响后面节点的输出. 下图展示了一个典型的循环神经网络. 循环神经网络的一个重要的概念就是时刻.上图中循环神经网络的主体结构A的输入除了来自输入层的Xt,还有一个自身当前时刻的状态St. 在每一个时刻,A会读取t时刻的输入Xt,并且得到一个输出Ht.同时还会得到一个当前时刻的状态St,传递给下一时刻t+1. 因此,循环…
自然语言处理和图像处理不同,作为人类抽象出来的高级表达形式,它和图像.声音不同,图像和声音十分直觉,比如图像的像素的颜色表达可以直接量化成数字输入到神经网络中,当然如果是经过压缩的格式jpeg等必须还要经过一个解码的过程才能变成像素的高阶矩阵的形式,而自然语言则不同,自然语言和数字之间没有那么直接的相关关系,也就不是那么容易作为特征输入到神经网络中去了,所以,用神经网络处理自然语言,不可避免的在数据预处理方面更加繁琐,也更加细致!自然语言处理的另外一个不同之处在于语言之间的相关关系,举一个最简单…
RNN适用场景 循环神经网络(Recurrent Neural Network)适合处理和预测时序数据 RNN的特点 RNN的隐藏层之间的节点是有连接的,他的输入是输入层的输出向量.extend(上一时刻隐藏层的状态向量). demo:单层全连接网络作为循环体的RNN 输入层维度:x 隐藏层维度:h 每个循环体的输入大小为:x+h 每个循环体的输出大小为:h 循环体的输出有两个用途: 下一时刻循环体的输入的一部分 经过另一个全连接神经网络,得到当前时刻的输出 序列长度 理论上RNN支持任意序列长…
1. RNN循环神经网络 1.1 结构 循环神经网络(recurrent neural network,RNN)源自于1982年由Saratha Sathasivam 提出的霍普菲尔德网络.RNN的主要用途是处理和预测序列数据.全连接的前馈神经网络和卷积神经网络模型中,网络结构都是从输入层到隐藏层再到输出层,层与层之间是全连接或部分连接的,但每层之间的节点是无连接的. 图 11 RNN-rolled 如图 11所示是一个典型的循环神经网络.对于循环神经网络,一个非常重要的概念就是时刻.循环神经网…