ZygoteInit 相关分析】的更多相关文章

上一篇文章我们已经分析到调用com.android.internal.os.ZygoteInit类的main函数. 今天分析一下com.android.internal.os.ZygoteInit类的main函数. public static void main(String argv[]) { // 注册zygote的socket registerZygoteSocket(); //加载Android Application Framework使用的类与资源 preloadClasses();…
Hello,我是你们人见人爱花见花开的小花.又和大家见面了,今天我们来聊一聊多视图学习利器------CCA. 一 典型相关分析的基本思想 当我们研究两个变量x和y之间的相关关系的时候,相关系数(相关系数是用以反映变量之间相关关系密切程度的统计指标.相关系数是按积差方法计算,同样以两变量与各自平均值的离差为基础,通过两个离差相乘来反映两变量之间相关程度:着重研究线性的单相关系数)是最常用的变量:其中Sxx为标准差. 那我们如何研究两组变量之间的相关关系呢?比如(X1,X2,X3)与(y1,y2)…
传统的典型相关分析只能考虑变量之间的线性相关情况,且必须为连续变量,而我们依然可以使用最优尺度变换来拓展其应用范围,使其可以分析非线性相关.数据为分类数据等情况,并且不再仅限于两个变量间的分析, 虽然具体算法非常复杂,但是过程却只要两步,首先对变量进行最优尺度变换,然后对其进行典型相关分析. 我们还是以之前的多重对应分析的案例数据进行分析 过程还是在分析—降维—最佳尺度…
我们已经知道,两个随机变量间的相关关系可以用简单相关系数表示,一个随机变量和多个随机变量的相关关系可以用复相关系数表示,而如果需要研究多个随机变量和多个随机变量间的相关关系,则需要使用典型相关分析. 典型相关分析由于研究的是两组随机变量之间的相关关系,因此也属于一种多元统计分析方法,多元统计分析方法基本上都有降维的思想,典型相关分析也不例外,它借用主成分分析的思想,在多个变量中提取少数几个综合变量,将研究多个变量间的相关关系转换为研究几个综合变量的相关关系. 典型相关分析首先在每组变量中寻找线性…
好久没写博客了,带着点小愧疚来,添上几个字: 这是今天遇到的一个bug,之前也遇到过,为了后面方便,就记下. bug提示:com.android.internal.os.ZygoteInit$MethodAndArgsCaller,bug表现:android小app直接闪退:要是不断点调试,还真不知道问题在哪里. 背景:正在写SQLite部分,CreatTable执行无误,到SaveTable,也就是我要存一组数据时,bug出现: 仔细核对后,"insert into UserTable ( U…
相关系数是衡量变量之间相关程度的度量,也是很多分析的中的当中环节,SPSS做相关分析比较简单,主要是区别如何使用这些相关系数,如果不想定量的分析相关性的话,直接观察散点图也可以. 相关系数有一些需要注意的地方: 1.两变量之间存在相关,仅意味着存在关联,并不意味着因果关系.2.相关系数不能进行加减乘除运算,没有单位,不同的相关系数不可比较3.相关系数大小容易受到数据取值区间大小和数据个数大小的影响.4.相关系数也需要进行检验确定其是否有统计学意义 相关系数的假设检验中H0:相关系数=0,变量间没…
code{white-space: pre;} pre:not([class]) { background-color: white; }if (window.hljs && document.readyState && document.readyState === "complete") { window.setTimeout(function() { hljs.initHighlighting(); }, 0);}.main-container {…
在前一篇文章中已经分析了从init.c到Zygote(app_process)的启动流程. 今天开始分析frameworks/base/cmds/app_process/app_main.cpp. service zygote /system/bin/app_process -Xzygote /system/bin --zygote --start-system-server 上面的内容会在app_main.cpp中用到. /* * 启动zygote的方式为/system/bin/app_pro…
Kernel典型相关分析 (一)KCCA 同样,我们可以引入Kernel函数,通过非线性的坐标变换达到之前CCA所寻求的目标.首先,假设映射$\Phi_X: x\rightarrow \Phi_X(x), \Phi_Y: y\rightarrow \Phi_Y(y)$,记$\mathbf{\Phi_X}=(\Phi_X(x_1),\Phi_X(x_2),\cdots,\Phi_X(x_p))^\prime, \mathbf{\Phi_Y}=(\Phi_Y(y_1),\Phi_Y(y_2),\cd…
典型相关分析 (一)引入 典型相关分析(Canonical Correlation Analysis)是研究两组变量之间相关关系的一种多元统计方法.他能够揭示出两组变量之间的内在联系. 我们知道,在一元统计分析中,用相关系数来衡量两个随机变量的线性相关关系,用复相关系数研究一个随机变量与多个随机变量的线性相关关系.然而,这些方法均无法用于研究两组变量之间的相关关系,于是提出了CCA.其基本思想和主成分分析非常相似.首先,在每组变量中寻找出变量的线性组合,使得两组的线性组合之间具有最大的相关系数:…