【Spark】概述】的更多相关文章

第1章 Spark 概述1.1 什么是 Spark1.2 Spark 特点1.3 Spark 的用户和用途第2章 Spark 集群安装2.1 集群角色2.2 机器准备2.3 下载 Spark 安装包2.4 配置 Spark Standalone 模式2.5 配置 Spark History Server2.6 配置 Spark HA2.7 配置 Spark Yarn 模式第3章 执行 Spark 程序3.1 执行第一个 spark 程序3.2 Spark 应用提交3.3 Spark shell3…
Spark概述 什么是Spark (官网:http://spark.apache.org) Spark是一种快速.通用.可扩展的大数据分析引擎,2009年诞生于加州大学伯克利分校AMPLab,2010年开源,2013年6月成为Apache孵化项目,2014年2月成为Apache顶级项目.目前,Spark生态系统已经发展成为一个包含多个子项目的集合,其中包含SparkSQL.Spark Streaming.GraphX.MLlib等子项目,Spark是基于内存计算的大数据并行计算框架.Spark基…
说到Spark就不得不提MapReduce/Hadoop, 当前越来越多的公司已经把大数据计算引擎从MapReduce升级到了Spark. 至于原因当然是MapReduce的一些局限性了, 我们一起先来看下Mapreduce的局限性和Spark如何做的改进. Spark概述 MapReduce局限性 1 仅支持Map和Reduce两种操作 2 处理效率极低 Map中间结果写磁盘,Reduce写HDFS,多个MR之间通过HDFS交换数据; 任务调度和启动开销大 无法充分利用内存 Map端和Redu…
2.spark概述 2.1 什么是spark Apache Spark™ is a unified analytics engine for large-scale data processing. apache的spark是一个针对于大规模数据处理的统一分析引擎 spark是基于内存的计算框架,计算速度非常快,但是这里仅仅只涉及到数据的计算,并没有涉及到数据的存储.后期需要进行数据的计算,这里就可以对接不同的外部数据源(比如hdfs) 2.2 为什么要学习spark 就是由于spark的处理速…
 第1章 Spark概述 1.1 什么是Spark Spark是一种快速.通用.可扩展的大数据分析引擎,2009年诞生于加州大学伯克利分校AMPLab,2010年开源,2013年6月成为Apache孵化项目,2014年2月成为Apache顶级项目.项目是用Scala进行编写. 目前,Spark生态系统已经发展成为一个包含多个子项目的集合,其中包含SparkSQL.Spark Streaming.GraphX.MLib.SparkR等子项目,Spark是基于内存计算的大数据并行计算框架.除了扩展了…
背景 目前按照大数据处理类型来分大致可以分为:批量数据处理.交互式数据查询.实时数据流处理,这三种数据处理方式对应的业务场景也都不一样: 关注大数据处理的应该都知道Hadoop,而Hadoop的核心为HDFS与MapReduce,HDFS分布式文件系统在Hadop中是用来存储数据的:MapReduce为Hadoop处理数据的核心,接触过函数式编程的都知道函数式语言中也存在着Map.Reduce函数其实这两者的思想是一致的:也正是因为Hadoop数据处理核心为MapReduce奠定了它注定不是适用…
Hive现有支持的执行引擎有mr和tez,默认的执行引擎是mr,Hive On Spark的目的是添加一个spark的执行引擎,让hive能跑在spark之上: 在执行hive ql脚本之前指定执行引擎.spark.home.spark.master set hive.execution.engine=spark; set spark.home=/home/spark/app/spark--bin-spark-without-hive; set spark.master=yarn; Hive O…
Spark 是什么? ● 官方文档解释:Apache Spark is a fast and general engine for large-scale data processing. 通俗的理解:Spark是基于内存计算的大数据并行计算框架.Spark基于内存计算,提高了在大数据环境下数据处理的实时性,同时保证了高容错性和高可伸缩性,允许用户将Spark 部署在大量廉价硬件之上,形成集群. ● 扩展了MapReduce计算模型:相比与MapReduce编程模型,Spark提供了更加灵活的D…
一.Spark简介 1.Spark的特点 特点1:运行速度快(内存计算,循环数据流.有向无环图设计机制) 把所有针对数据集的操作转换成一张有向无环图,整个执行引擎调度都是基于这个有向无环图,对这个有向无环图的后期操作,会进行拆分,分成不同的阶段,每一阶段分成不同的任务,再去分发到不同的机器上去执行. 它可以采用特定的方式对它整个里面执行的过程进行优化,比如流水线优化 特点2:容易使用,Scala可通过spark Shell进行交互式编程 特点3:通用性(完整的解决方案,技术软件栈) 特点4:运行…
1.1 什么是Spark ​ Apache Spark 是专为大规模数据处理而设计的快速通用的计算引擎. ​ 一站式管理大数据的所有场景(批处理,流处理,sql) ​ spark不涉及到数据的存储,只做数据的计算 ​ Spark是UC Berkeley AMP lab (加州大学伯克利分校的AMP实验室)所开源的类Hadoop MapReduce的通用并行计算框架,Spark拥有Hadoop MapReduce所具有的优点: ​ 但不同于MapReduce的是Job中间输出结果可以保存在内存中,…