ACM/ICPC 之 最小割转网络流(POJ3469)】的更多相关文章

重点:构图 //最小割转网络流 //邻接表+Dinic //Time:5797Ms Memory:6192K #include<iostream> #include<cstring> #include<cstdio> #include<algorithm> #include<queue> using namespace std; #define MAXN 20005 #define MAXM 500005 #define INF 0x3f3f3f…
[BZOJ2229][ZJOI2011]最小割(网络流,最小割树) 题面 BZOJ 洛谷 题解 戳这里 那么实现过程就是任选两点跑最小割更新答案,然后把点集划分为和\(S\)联通以及与\(T\)联通. 然后再这两个点集里面分别任选两点跑最小割,递归下去即可. #include<iostream> #include<cstdio> #include<cstdlib> #include<cstring> #include<cmath> #includ…
[BZOJ1797][AHOI2009]最小割(网络流) 题面 BZOJ 洛谷 题解 最小割的判定问题,这里就当做记结论吧.(源自\(lun\)的课件) 我们先跑一遍最小割,求出残量网络.然后把所有还有流量的边拿出来跑\(Tarjan\)缩\(SCC\). 如果一条满流边的两个端点不在同一个\(SCC\)中则这条边可能存在于最小割中. 证明:考虑如果减少一条边的容量之后,最小割变小了,证明这条边可能存在于最小割之中. 那么反过来,如果\((u,v)\)在同一个\(SCC\)中,我们把\(u\ri…
题目描述 小白在图论课上学到了一个新的概念——最小割,下课后小白在笔记本上写下了如下这段话: “对于一个图,某个对图中结点的划分将图中所有结点分成两个部分,如果结点s,t不在同一个部分中,则称这个划分是关于s,t的割. 对于带权图来说,将所有顶点处在不同部分的边的权值相加所得到的值定义为这个割的容量,而s,t的最小割指的是在关于s,t的割中容量最小的割” 现给定一张无向图,小白有若干个形如“图中有多少对点它们的最小割的容量不超过x呢”的疑问,小蓝虽然很想回答这些问题,但小蓝最近忙着挖木块,于是作…
一道裸的最小割的题,写一下只是练练手. 表示被卡M,RE不开心.一道裸题至于吗? 再次复习一下最大权闭合子图: 1.每一个点若为正权,与源点连一条容量为绝对值权值的边.否则连向汇点一条容量为绝对值权值的边 2.如果有选了A点才能选B点的约束条件,且违背这个约束条件有C的代价,则从A点向B点连一条容量为C的边(如果不能违背,则连一条容量为INF的边) 3.设源点出度为C,最大流的值为D.答案为C-D. #include<cstdio> #include<queue> #include…
不同的最小割 bzoj-4519 Cqoi-2016 题目大意:题目链接. 注释:略. 想法: 我们发现这和最小割那题比较像. 我们依然通过那个题说的办法一样,构建最小割树即可. 接下来就是随便怎么处理都行了. 我们可以弄一个数组把枚举到的距离都记录下来即可. Code: #include <bits/stdc++.h> #define N 860 #define M 17010 using namespace std; queue<int> q; int n,head[N],to…
最小割 bzoj-2229 Zjoi-2011 题目大意:题目链接. 注释:略. 想法: 在这里给出最小割树的定义. 最小割树啊,就是这样一棵树.一个图的最小割树满足这棵树上任意两点之间的最小值就是原图中这两点之间的最小割. 这个性质显然是非常优秀的. 我们不妨这样假设,我么已经把最小割树求出来了,那么这个题就迎刃而解了. 我们可以直接枚举点对,然后暴力验证就可以直接枚举出所有的合法点对是吧. 那么问题来了,我们如何才能求出所有的合法的点对? 这就需要用到了最小割树的构建过程. 我们最小割树的构…
传送门 首先肯定要跑一个最小割也就是最大流 然后我们把残量网络tarjan,用所有没有满流的边来缩点 一条边如果没有满流,那它就不可能被割了 一条边如果所属的两个强联通分量不同,它就可以被割 一条边如果所属的两个点一个与源点同块,一个与汇点同块,那么它就可以一定在最小割集合中 为啥我也不会证,直接搬一下隔壁的吧 1.将每个SCC缩成一个点,得到的新图就只含有满流边了.那么新图的任一s-t割都对应原图的某个最小割,从中任取一个把id[u]和id[v]割开的割即可证明.  2.假设将(u,v)的边权…
P4126 [AHOI2009]最小割 边$(x,y)$是可行流的条件: 1.满流:2.残量网络中$x,y$不连通 边$(x,y)$是必须流的条件: 1.满流:2.残量网络中$x,S$与$y,T$分别连通 现在的问题是怎么判断点之间是否连通 我们可以在残量网络上跑tarjan,处理出强连通分量 如果两点同属一个强连通分量,那么它们之间就连通辣 #include<iostream> #include<cstdio> #include<cstring> #include&l…
正题 题目链接:https://www.luogu.com.cn/problem/P4126 题目大意 给出\(n\)个点\(m\)条边的一张有向图和起点终点.对于每条边求其是否是最小割的可行割/必须割 \(1\leq n\leq 4000,1\leq m\leq 60000\) 解题思路 一些结论吧,首先是可行割,跑一次最大流,然后如果一条边是可行割需要满足 该边满流 残量网络上没有\(x,y\)之间的环 首先满流是显然的,然后第二个结论的话,如果它们之间有环,那么从\(y\)顺着环的方向逆流…