Solution Set -「ABC 196」】的更多相关文章

  大家好屑兔子又来啦! [A - Lexicographic Order]   说个笑话,\(\color{black}{\text{W}}\color{red}{\text{alkingDead}}\) 和 \(\color{black}{\text{O}}\color{red}{\text{neInDark}}\) 在这题各罚了两次时,我因为不会所以没有被罚. [B - AtCoder Quiz]不会. [C - Inverse of Permutation]不会. [D - Cuttin…
  大概只有比较有意思又不过分超出能力范围的题叭.   可是兔子的"能力范围" \(=\varnothing\) qwq. 「CF 1267G」Game Relics   任意一个状态可以描述为 \((m,s)\),表示剩下 \(m\) 个·总价值为 \(s\) 的物品未选.若当前决策为 X 操作,那么由于决策的确定性,我们必然不停 X 直到出货.所以代价为 \[\frac{x}{2}\left(\frac{n}{m}+1\right), \] 若当前决策为 C 操作,代价则为 \(\…
「ARC 107A」Simple Math   Link.   答案为: \[\frac{a(a+1)\cdot b(b+1)\cdot c(c+1)}{8} \] 「ARC 107B」Quadruple   Link.   枚举 \(i=c+d\),则 \(a+b=i+k\),乘法原理计数. 「ARC 107C」Shuffle Permutation   Link.   由于矩阵内无相等元素,所以行和列的顺序可以直接乘法原理.以对行的排列方案计数为例,并查集维护所有可以交换位置的行,则行的方案…
\(\mathcal{Description}\)   Link.   有 \(n\) 支蜡烛,第 \(i\) 支的坐标为 \(x_i\),初始长度为 \(a_i\),每单位时间燃烧变短 \(1\) 直到长度为 \(0\).你从 \(0\) 位置出发,每次可以向左或向右走 \(1\) 单位,走到一个蜡烛的位置可以吹熄蜡烛.求最多能保留的蜡烛长度之和.   \(n\le300\). \(\mathcal{Solution}\)   和 甲虫 这题比较像,可以说是相同思路的不同实现方法.问题的核心自…
\(\mathcal{Description}\)   Link.   有 \(n\) 种颜色的,第 \(i\) 种有 \(a_i\) 个,任意两球互不相同.还有 \(m\) 个盒子,每个盒子可以被放入某些颜色的小球,且第 \(i\) 个盒子要求放入总数不少于 \(b_i\).你要拿走尽量少的球,使得要求无法被满足,并求出此时拿球方案数模 \(998244353\) 的值.   \(n\le20\),\(m\le10^4\). \(\mathcal{Solution}\)   如果保持清醒地做这…
\(\mathcal{Description}\)   Link.   给定简单无向图 \(G=(V,E)\),点的编号从 \(1\) 到 \(|V|=n\).对于 \(k=2..n\),求 \(H=(V,E'\subseteq E)\) 的个数,使得 \(1\) 与 \(k\) 连通.   \(n\le17\). \(\mathcal{Solution}\)   一种在状压 DP 子集枚举时的去重 trick√   令 \(f(S)\) 表示仅考虑点集 \(S\) 的导出子图时,使得点集 \(…
\(\mathcal{Description}\)   Link.   给定一个含 \(n\) 个结点 \(m\) 条边的简单无向图,每条边的边权是一个常数项为 \(0\) 的 \(T\) 次多项式,求所有从 \(1\) 结点出发回到 \(1\) 结点的环路中,边权之积的 \(T\) 次项系数和.   \(n,m\le10\),\(T\le4\times10^4\). \(\mathcal{Solution}\)   令 \(f_i(x)=\sum_{j\ge0}f_{i,j}x^j\),从 \…
D - Cutting Woods 记录每一个切割点,每次求前驱后驱就好了,注意简单判断一下开闭区间. 考场上采用的 FHQ_Treap 无脑莽. #include <cstdio> #include <cstdlib> using namespace std; typedef long long LL; LL Max(LL x, LL y) { return x > y ? x : y; } LL Min(LL x, LL y) { return x < y ? x…
考虑停时定理. 初始势能为 \(\sum \Phi(cnt_i)\),末势能为 \(\Phi(n)\),我们希望构造这样一个 \(\Phi:Z\to Z\) 函数,使得每一次操作期望势能变化量为常数. 考虑一次变化: \[\Phi(cnt)+1=\sum_{j=0}^{cnt} \frac{\binom{cnt}{j}}{2^j}\sum_{k=0}^{n-cnt}\frac{\binom{n-cnt}{k}}{2^k}\left(\frac{j+k}{n}\Phi(cnt-j+1)+(1-\f…
目录 问题引入 思考 Lagrange 插值法 插值过程 代码实现 实际应用 「洛谷 P4781」「模板」拉格朗日插值 「洛谷 P4463」calc 题意简述 数据规模 Solution Step 1 Step 2 证明 代码 「CF 995F」Cowmpany Cowmpensation 题意简述 数据规模 Solution Step 1 Step 2 证明 代码 「CF 662F」The Sum of the k-th Powers 题意简述 数据规模 Solution 代码 「BZOJ 3…