Codeprivate void button1_Click(object sender, EventArgs e) { Emgu.CV.Capture cap = new Capture("d:\\1.wmv"); Emgu.CV.VideoSurveillance.BGStatModel<Bgr> bg = null; ; Capture c = new Capture("d:\\1.wmv"); Image<Bgr, byte> img…
又开了波专题,感觉就和炉石开冒险一样...(说的好像我有金币开冒险似的) /---------------------------------------------/ BZOJ-1226 [SDOI2009]学校食堂Dining 状态压缩DP f[i][j][k]表示前i-1人都吃过饭,j表示i与i之后7人的吃饭情况,k表示上一个吃饭的人与i的相对位置 转移如程序: 这题需要注意一些小细节: 后面同学的领饭情况需要压8位而不是7位 当一个同学已经领到饭的时候,他的忍耐度就可以忽略了 code:…
人工智能大师访谈 by 吴恩达 吴恩达采访 Geoffery Hinton Geoffery Hinton主要观点:要阅读文献,但不要读太多,绝对不要停止编程. Geoffrey Hinton:谢谢你的邀请 吴恩达:我想你是至今为止整个地球上发明最多深度学习核心理念的人,很多人都称呼你为"深度学习教父",尽管我是直到和你聊了几分钟之后才发现我是第一个这样称呼你的人, 对此我深感荣幸不过我想问的是,许多人把你看作传奇,我更想知道一些传奇背后的私人故事,所以你是怎样在很久之前就投身于人工智…
高斯拉普拉斯(Laplace of Gaussian) kezunhai@gmail.com http://blog.csdn.net/kezunhai Laplace算子作为一种优秀的边缘检测算子,在边缘检测中得到了广泛的应用.该方法通过对图像求图像的二阶倒数的零交叉点来实现边缘的检测,公式表示如下: 由于Laplace算子是通过对图像进行微分操作实现边缘检测的,所以对离散点和噪声比较敏感.于是,首先对图像进行高斯卷积滤波进行降噪处理,再采用Laplace算子进行边缘检测,就可以提高算子对噪声…
基于图嵌入的高斯混合变分自编码器的深度聚类 Deep Clustering by Gaussian Mixture Variational Autoencoders with Graph Embedding, DGG 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 1. 引言 这篇博文主要是对论文“Deep Clustering by Gaussian Mixture Variational Autoencoders with Graph Embe…
python风控评分卡建模和风控常识(博客主亲自录制视频教程) https://study.163.com/course/introduction.htm?courseId=1005214003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share 高斯过程(gaussian process) 可用于回归和分类器 高斯过程主要应用于各领域的建模和预报,在时间序列分析中,高斯过程被用于时间序列的多…
本文逐步介绍YOLO v1~v3的设计历程. YOLOv1基本思想 YOLO将输入图像分成SxS个格子,若某个物体 Ground truth 的中心位置的坐标落入到某个格子,那么这个格子就负责检测出这个物体. 每个格子预测B个bounding box及其置信度(confidence score),以及C个类别概率.bbox信息(x,y,w,h)为物体的中心位置相对格子位置的偏移及宽度和高度,均被归一化.置信度反映是否包含物体以及包含物体情况下位置的准确性,定义为\(Pr(Object) \tim…
参考地址:https://blog.csdn.net/leviopku/article/details/82660381 YOLO v3结构图 DBL:卷积+BN+leaky relu,是v3的最小组件 resn:n代表数字,有res1,res2,...,res8等,表示这个res_block里含有多少个res_unit.这是YOLO-v3的大组件,YOLO-v3借鉴了ResNet的残差结构,使用这个结构可以让网络更深(从v2的darknet-19上升到darknet-53,前者没有残差结构).…
()高斯理论简介 () ()代码实现 四 使用高斯滤波器进行图像的平滑 ()高斯简介 http://research.microsoft.com/en-us/um/people/kahe/eccv10/ 何凯明 matlab 实现 http://www.ruanyifeng.com/blog/2012/11/gaussian_blur.html 阮一峰 http://www.zwbk.org/MyLemmaShow.aspx?lid=126233  中文百科独特解释 http://academi…
1 引言 深度学习目前已经应用到了各个领域,应用场景大体分为三类:物体识别,目标检测,自然语言处理.本文着重与分析目标检测领域的深度学习方法,对其中的经典模型框架进行深入分析. 目标检测可以理解为是物体识别和物体定位的综合,不仅仅要识别出物体属于哪个分类,更重要的是得到物体在图片中的具体位置. 为了完成这两个任务,目标检测模型分为两类.一类是two-stage,将物体识别和物体定位分为两个步骤,分别完成,这一类的典型代表是R-CNN, fast R-CNN, faster-RCNN家族.他们识别…