今天介绍数值计算和优化方法中非常有效的一种数值解法,共轭梯度法.我们知道,在解大型线性方程组的时候,很少会有一步到位的精确解析解,一般都需要通过迭代来进行逼近,而 PCG 就是这样一种迭代逼近算法. 我们先从一种特殊的线性方程组的定义开始,比如我们需要解如下的线性方程组: Ax=b" role="presentation">Ax=bAx=b 这里的 A(n×n)" role="presentation" style="positi…
# coding=utf-8 #共轭梯度算法求最小值 import numpy as np from scipy import optimize def f(x, *args): u, v = x a, b, c, d, e, f,g,h = args return a*u**g+ b*u*v + c*v**h + d*u + e*v + f def gradf(x, *args): u, v = x a, b, c, d, e, f,g,h = args gu = g*a*u + b*v +…
无预处理共轭梯度 要求解线性方程组 ,稳定双共轭梯度法从初始解 开始按以下步骤迭代: 任意选择向量 使得 ,例如, 对 若 足够精确则退出 预处理共轭梯度 预处理通常被用来加速迭代方法的收敛.要使用预处理子 来求解线性方程组 ,预处理稳定双共轭梯度法从初始解 开始按以下步骤迭代: 任意选择向量 使得 ,例如, 对 若 足够精确则退出 这个形式等价于将无预处理的稳定双共轭梯度法应用于显式预处理后的方程组 , 其中 ,,.换句话说,左预处理和右预处理都可以通过这个形式实施. Mahout 分布式共轭…
一.图像梯度算法 1.图像梯度-Sobel算子 dst = cv2.Sobel(src, ddepth, dx, dy, ksize) ddepth:图像的深度 dx和dy分别表示水平和竖直方向 ksize是Sobel算子的大小 # *******************图像梯度算法**********************开始 import cv2 # import numpy as np img = cv2.imread('pie.png',cv2.IMREAD_GRAYSCALE) cv…
L1正则化是一种常用的获取稀疏解的手段,同时L1范数也是L0范数的松弛范数.求解L1正则化问题最常用的手段就是通过加速近端梯度算法来实现的. 考虑一个这样的问题: minx  f(x)+λg(x) x∈Rn,f(x)∈R,这里f(x)是一个二阶可微的凸函数,g(x)是一个凸函数(或许不可导),如上面L1的正则化||x||. 此时,只需要f(x)满足利普希茨(Lipschitz)连续条件,即对于定义域内所有向量x,y,存在常数M使得||f'(y)-f'(x)||<=M·||y-x||,那么这个模型…
邻近梯度下降法 对于无约束凸优化问题,当目标函数可微时,可以采用梯度下降法求解:当目标函数不可微时,可以采用次梯度下降法求解:当目标函数中同时包含可微项与不可微项时,常采用邻近梯度下降法求解.上述三种梯度算法均属于离线批处理类型算法,在大规模的数据问题中,每次迭代都需要计算整个数据集梯度,因而需要较大的计算代价和存储空间.在线邻近梯度法(Online Proximal Gradient,OPG)是随即优化算法与临近梯度算法的结合,是一种典型的随机优化方法,以单个或小批量采样数据而实现数据实时处理…
如下代码段是关于C++算法之大数加法计算的代码,希望对大家有用. { int length; int index; int smaller; int prefix = 0; if(NULL == src1 || 0 >= length1 || NULL == src2 || 0 >= length2) return NULL; length = length1 > length2 ? (length1 + 1) : (length2 + 1); assert(NULL != dest);…
基本算法思想Java实现的详细代码 算法是一个程序的灵魂,一个好的算法往往可以化繁为简,高效的求解问题.在程序设计中算法是独立于语言的,无论使用哪一种语言都可以使用这些算法,本文笔者将以Java语言为例介绍一些常用的算法思想. 分类 穷举算法思想 递推算法思想 递归算法思想 分治算法思想 概率算法思想  穷举算法思想 穷举算法的基本思想 从所有可能情况中搜索正确答案 1. 对于一种可能情况,计算其结果. 2. 判断结果是否满足,如不能满足者执行第一步来搜索下一个可能的情况:如满足则表示选找到一个…
01 概述 Greedy Randomized Adaptive Search,贪婪随机自适应搜索(GRAS),是组合优化问题中的多起点元启发式算法,在算法的每次迭代中,主要由两个阶段组成:构造(construction)和局部搜索( local search). 构造(construction)阶段主要用于生成一个可行解,而后该初始可行解会被放进局部搜索进行邻域搜索,直到找到一个局部最优解为止. 02 整体框架 如上面所说,其实整一个算法的框架相对于其他算法来说还算比较简单明了,大家可以先看以…
<算法导论>第二章demo代码实现(Java版) 前言 表示晚上心里有些不宁静,所以就写一篇博客,来缓缓.囧 拜读<算法导论>这样的神作,当然要做一些练习啦.除了练习题与思考题那样的理论思考,也离不开编码的实践. 所以,后面每个章节,我都会尽力整理出章节中涉及的算法的Java代码实现. 二分查找 算法实现 package tech.jarry.learning.test.algorithms.binarysearch; public class BinarySearch { pub…