摘要:CANN作为释放昇腾硬件算力的关键平台,通过深耕先进的模型压缩技术,聚力打造AMCT模型压缩工具,在保证模型精度前提下,不遗余力地降低模型的存储空间和计算量. 随着深度学习的发展,推理模型巨大的参数量和计算量,需要耗费越来越多的硬件资源,也给模型在移动端的部署带来了新的挑战. 能不能像哆啦A梦一样,变出一条缩小隧道,不管再大的模型,塞进去后就能变小变轻,在寸土寸金的AI硬件资源上身轻如燕- 答案是:当然可以! 通常来说,想要构建深度学习领域的模型缩小隧道,加速模型推理部署,一般需要借助量化…
摘要:通过一个垃圾分类应用的开发示例,介绍AI Gallery在AI应用开发流程中的作用. 本文分享自华为云社区<AI Gallery:从0到1开发AI图像分类应用>,作者: yd_269359708 . 现如今,人工智能(AI)技术在计算机领域内,得到了越来越广泛的重视,并在各行各业中得到应用.然而无论是AI开发的初学者,还是资深的AI开发专家,在AI 应用开发工程中,都会面临着不小的麻烦.我们今天要介绍的AI Gallery,就是一个开放的开发者生态社区,提供了数据集.算法.模型等AI数字…
.caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px solid #000; } .table { border-collapse: collapse !important; } .table td, .table th { background-color: #fff !important; } .table-bordered th, .table-bordere…
专栏目录: 第一章:PyTorch之简介与下载 PyTorch简介 PyTorch环境搭建 第二章:PyTorch之60分钟入门 PyTorch入门 PyTorch自动微分 PyTorch神经网络 PyTorch图像分类器 PyTorch数据并行处理 第三章:PyTorch之入门强化 数据加载和处理 PyTorch小试牛刀 迁移学习 混合前端的seq2seq模型部署 保存和加载模型 第四章:PyTorch之图像篇 微调基于torchvision 0.3的目标检测模型 微调TorchVision模…
Newbe.Claptrap 0.4.4 发布,模型验证器上线. 更新内容 完全基于表达式树的模型验证器 本版本,我们带来了基于表达式树实现的模型验证器.并实现了很多内置的验证方法. 我们罗列了与 FluentValidation 比较的情况: Build in Validators FluentValidation 9.X Newbe.ObjectVistor NotNull ️ ️ NotNull; class NotEmpty ️ ️ NotEmpty; string,enumerable…
支持 gRPC 长链接,深度解读 Nacos 2.0 架构设计及新模型 原创 杨翊(席翁) 阿里巴巴云原生 2020-12-28    …
微调torchvision 0.3的目标检测模型 本文将微调在 Penn-Fudan 数据库中对行人检测和分割的已预先训练的 Mask R-CNN 模型.它包含170个图像和345个行人实例,说明如何在 torchvision 中使用新功能,以便在自定义数据集上训练实例分割模型. 1.定义数据集 对于训练对象检测的引用脚本,实例分割和人员关键点检测,要求能够轻松支持添加新的自定义数据.数据集应该从标准的类torch.utils.data.Dataset 继承而来,并实现_len和_getitem…
文章发布于公号[数智物语] (ID:decision_engine),关注公号不错过每一篇干货. 转自 | 宜信技术学院 作者 | 井玉欣 导读:随着“数据中台”的提出和成功实践,各企业纷纷在“大中台,小前台”的共识下启动了自己的中台化进程,以数据中台.技术中台.业务中台为代表的一系列技术,极大增强了业务的敏捷性,提高了组织效能.同时随着智能技术的发展,AI应用在业务研发中的占比逐渐升高,但AI模型训练的复杂性导致其开发慢.效率低,严重影响了业务的灵活性. 针对这种情况,能否基于中台化思想对业务…
摘要:随着边缘设备数量指数级增长以及设备性能的提升,边云协同机器学习应运而生,以期打通机器学习的最后一公里. 本文分享自华为云社区<支持边云协同终身学习特性,KubeEdge子项目Sedna 0.3.0版本发布! >,原文作者:技术火炬手 . 1.当前机器学习落地挑战 当前机器学习落地有哪些问题? 近二十年来,机器学习已广泛应用于数据挖掘.计算机视觉.自然语言处理.生物特征识别.搜索引擎.医学诊断.检测信用卡欺诈.证券市场分析.DNA序列测序.语音和手写识别.战略游戏和机器人等领域. 在实际业…
背景 海量且优质的数据集是一个好的 AI 模型的基石之一,如何存储.管理这些数据集,以及在模型训练时提升 I/O 效率一直都是 AI 平台工程师和算法科学家特别关注的事情.不论是单机训练还是分布式训练,I/O 的性能都会显著影响整体 pipeline 的效率,甚至是最终的模型质量. 我们也逐渐看到容器化成为 AI 训练的趋势,利用容器可以快速弹性伸缩的特点,结合公有云的资源池,能够最大化资源利用率,为企业大大节约成本.因此也就诞生了类似 Kubeflow 和 Volcano 这样的开源组件,帮助…