1. 什么是TF-IDF tf-idf(英语:term frequency–inverse document frequency)是一种用于信息检索与文本挖掘的常用加权技术.tf-idf是一种统计方法,用以评估一字词对于一个文件集或一个语料库中的其中一份文件的重要程度.字词的重要性随着它在文件中出现的次数成正比增加,但同时会随着它在语料库中出现的频率成反比下降. 2. 如何用sklearn计算TF-IDF? 2.1 语料集 本文所用语料集为人机对话系统中的短文本语料,corpus列表中的每个元素…
如何用textgenrnn处理中文 1. 什么是textgenrnn? textgenrnn是建立在Keras和TensorFlow之上的,可用于生成字级别和词级别文本.网络体系结构使用注意力加权来加速训练过程并提高质量,并允许调整大量超参数,如RNN模型大小.RNN层和双向RNN.对细节感兴趣的读者,可以在Github上或类似的介绍博客文章中阅读有关textgenrnn及其功能和体系结构的更多信息. Github项目地址: https://github.com/minimaxir/textge…
利用sklearn计算文本相似性,并将文本之间的相似度矩阵保存到文件当中.这里提取文本TF-IDF特征值进行文本的相似性计算. #!/usr/bin/python # -*- coding: utf-8 -*- import numpy import os import sys from sklearn import feature_extraction from sklearn.feature_extraction.text import TfidfTransformer from sklea…
本文是讲述怎样使用word2vec的基础教程.文章比較基础,希望对你有所帮助! 官网C语言下载地址:http://word2vec.googlecode.com/svn/trunk/ 官网Python下载地址:http://radimrehurek.com/gensim/models/word2vec.html 1.简介 參考:<Word2vec的核心架构及其应用 · 熊富林.邓怡豪,唐晓晟 · 北邮2015年>           <Word2vec的工作原理及应用探究 · 周练 ·…
摘自https://www.jianshu.com/p/fdde9fc03f94 你在工作.学习中是否曾因信息过载叫苦不迭?有一种方法能够替你读海量文章,并将不同的主题和对应的关键词抽取出来,让你谈笑间观其大略.本文使用Python对超过1000条文本做主题抽取,一步步带你体会非监督机器学习LDA方法的魅力.想不想试试呢?     淹没 每个现代人,几乎都体会过信息过载的痛苦.文章读不过来,音乐听不过来,视频看不过来.可是现实的压力,使你又不能轻易放弃掉. 假如你是个研究生,教科书和论文就是你不…
简介 查看百度搜索中文文本聚类我失望的发现,网上竟然没有一个完整的关于Python实现的中文文本聚类(乃至搜索关键词python 中文文本聚类也是如此),网上大部分是关于文本聚类的Kmeans聚类的原理,Java实现,R语言实现,甚至都有一个C++的实现. 正好我写的一些文章,我没能很好的分类,我想能不能通过聚类的方法将一些相似的文章进行聚类,然后我再看每个聚类大概的主题是什么,给每个聚类一个标签,这样也是完成了分类. 中文文本聚类主要有一下几个步骤,下面将分别详细介绍: 切词 去除停用词 构建…
摘要:文章将详细讲解Keras实现经典的深度学习文本分类算法,包括LSTM.BiLSTM.BiLSTM+Attention和CNN.TextCNN. 本文分享自华为云社区<Keras深度学习中文文本分类万字总结(CNN.TextCNN.BiLSTM.注意力)>,作者: eastmount. 一.文本分类概述 文本分类旨在对文本集按照一定的分类体系或标准进行自动分类标记,属于一种基于分类体系的自动分类.文本分类最早可以追溯到上世纪50年代,那时主要通过专家定义规则来进行文本分类:80年代出现了利…
http://www.tuicool.com/articles/qmMba2 1 using System; using System.IO; using System.Collections.Generic; namespace Skyiv.Utils { // 对中文文本进行统计分析,主要统计其中常用字和次常用字的占比. sealed class ChineseCounter { static readonly string Skiped = "…
1.载入文档 #!/usr/bin/python # -*- coding: utf-8 -*- import pandas as pd import re import jieba from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer #加载文本 dataPath1='D:/machinelearning data/crawlerData/mi6x_JD500.csv' dataPath2='…
自然语言处理的大部分任务是监督学习问题.序列标注问题如中文分词.命名实体识别,分类问题如关系识别.情感分析.意图分析等,均需要标注数据进行模型训练.深度学习大行其道的今天,基于深度学习的 NLP 模型更是数据饥渴. 本文分享一个中文文本标注工具Chinese-Annotator.  https://github.com/crownpku/Chinese-Annotator 最前沿的 NLP 技术往往首先针对英文语料.英文 NLP 的生态很好,针对不同有意思的问题都有不少大规模语料公开供大家研究,…