一.由线性回归导出逻辑回归: 二.“一对多”算法解决多分类问题: 三.“过拟合”和“欠拟合”: (1)对线性回归加入正则项: (2)对逻辑回归加入正则项: (3)加入正则项之后的正规方程:…
1.Feature Scaling(特征缩放): 如上图所示,x1是房屋面积,x2是房间个数,若不进行特征缩放,则代价函数J的曲线近似为一个瘦长的椭圆(我暂时这么理解,θ1和θ2分别是x1和x2的权值系数,而x2的特征向量值相较x1很小,则x1变化一个较小的量,在J的同一条相同的圆弧曲线上θ2就要变化一个较大的量,因此成为一个椭圆形式) 而对于左图的椭圆,会加大用梯度下降算法到达最低点的难度,所以我们可以采用右图的特征缩放,是他们都缩放到同一个数量级,这样J的形状近似为一个圆,更容易达到最低点.…
Week 1 的内容主要有: 机器学习的定义 监督式学习和无监督式学习 线性回归和成本函数 梯度下降算法 线性代数回归 主要是了解一下机器学习的基本概念,重点是学习线性回归模型,以及对应的成本函数和梯度下降算法. 以上两幅图基本上就是week 1 的重点了. 下文是我做的比较粗糙的一个关于week 1 的总结.其中线性代数部分就省略掉了,大学里基本都有学过矩阵相关的操作.…
斯坦福大学机器学习 课程信息 机器学习是一门研究在非特定编程条件下让计算机采取行动的学科.最近二十年,机器学习为我们带来了自动驾驶汽车.实用的语音识别.高效的网络搜索,让我们对人类基因的解读能力大大提高.当今机器学习技术已经非常普遍,您很可能在毫无察觉情况下每天使用几十次.许多研究者还认为机器学习是人工智能(AI)取得进展的最有效途径.在本课程中,您将学习最高效的机器学习技术,了解如何使用这些技术,并自己动手实践这些技术.更重要的是,您将不仅将学习理论知识,还将学习如何实践,如何快速使用强大的技…
这学期一直在跟进 Coursera上的 Machina Learning 公开课, 老师Andrew Ng是coursera的创始人之一,Machine Learning方面的大牛.这门课程对想要了解和初步掌握机器学习的人来说是不二的选择.这门课程涵盖了机器学习的一些基本概念和方法,同时这门课程的编程作业对于掌握这些概念和方法起到了巨大的作用. 课程地址 https://www.coursera.org/learn/machine-learning 笔记主要是简要记录下课程内容,以及MATLAB…
这学期一直在跟进 Coursera上的 Machina Learning 公开课, 老师Andrew Ng是coursera的创始人之一,Machine Learning方面的大牛.这门课程对想要了解和初步掌握机器学习的人来说是不二的选择.这门课程涵盖了机器学习的一些基本概念和方法,同时这门课程的编程作业对于掌握这些概念和方法起到了巨大的作用. 课程地址 https://www.coursera.org/learn/machine-learning 笔记主要是简要记录下课程内容,以及MATLAB…
这学期一直在跟进 Coursera上的 Machina Learning 公开课, 老师Andrew Ng是coursera的创始人之一,Machine Learning方面的大牛.这门课程对想要了解和初步掌握机器学习的人来说是不二的选择.这门课程涵盖了机器学习的一些基本概念和方法,同时这门课程的编程作业对于掌握这些概念和方法起到了巨大的作用. 课程地址 https://www.coursera.org/learn/machine-learning 笔记主要是简要记录下课程内容,以及MATLAB…
这学期一直在跟进 Coursera上的 Machina Learning 公开课, 老师Andrew Ng是coursera的创始人之一,Machine Learning方面的大牛.这门课程对想要了解和初步掌握机器学习的人来说是不二的选择.这门课程涵盖了机器学习的一些基本概念和方法,同时这门课程的编程作业对于掌握这些概念和方法起到了巨大的作用. 课程地址 https://www.coursera.org/learn/machine-learning 笔记主要是简要记录下课程内容,以及MATLAB…
最近算是一段空闲期,不想荒废,记得之前有收藏一个机器学习的链接Andrew Ng的网易公开课,其中的overfiting部分做组会报告时涉及到了,这几天有时间决定把这部课程学完,好歹算是有个粗浅的认识. 本来想去网上查一查机器学习的书籍,发现李航的<统计学习方法>和PRML(Pattern Recognition And Machine Learning)很受人推崇,有空再看吧. 然后在图书馆碰到了天佑,给我推荐了coursera这个网站,上面有Andrew Ng针对网络版的机器学习教程,挺好…
课程笔记 Coursera—Andrew Ng机器学习—课程笔记 Lecture 9_Neural Networks learning 作业说明 Exercise 4,Week 5,实现反向传播 backpropagation神经网络算法, 对图片中手写数字 0-9 进行识别. 数据集 :ex4data1.mat.手写数字图片数据,5000个样例.每张图片20px * 20px,也就是一共400个特征.数据集X维度为5000 * 400 ex4weights.mat.神经网络每一层的权重. 文件…
Machine Learning - Andrew Ng - Coursera Contents 1 Notes 1 Notes What is Machine Learning? Two definitions of Machine Learning are offered. Arthur Samuel described it as: "the field of study that gives computers the ability to learn without being exp…
Machine Learning by Andrew Ng | Stanford University | Coursera https://www.coursera.org/learn/machine-learning Machine learning is the science of getting computers to act without being explicitly programmed. In the past decade, machine learning has g…
本周主要介绍了聚类算法和特征降维方法,聚类算法包括K-means的相关概念.优化目标.聚类中心等内容:特征降维包括降维的缘由.算法描述.压缩重建等内容.coursera上面Andrew NG的Machine learning课程地址为:https://www.coursera.org/course/ml  (一)K-means聚类算法 Input data:未标记的数据集,类别数K: 算法流程: 首先随机选择K个点,作为初始聚类中心(cluster centroids): 计算数据集中每个数据与…
本栏目内容来源于Andrew NG老师讲解的SVM部分,包括SVM的优化目标.最大判定边界.核函数.SVM使用方法.多分类问题等,Machine learning课程地址为:https://www.coursera.org/course/ml 大家对于支持向量机(SVM)可能会比较熟悉,是个强大且流行的算法,有时能解决一些复杂的非线性问题.我之前用过它的工具包libsvm来做情感分析的研究,感觉效果还不错.NG在进行SVM的讲解时也同样建议我们使用此类的工具来运用SVM. (一)优化目标(Opt…
这部分内容来源于Andrew NG老师讲解的 machine learning课程,包括异常检测算法以及推荐系统设计.异常检测是一个非监督学习算法,用于发现系统中的异常数据.推荐系统在生活中也是随处可见,如购物推荐.影视推荐等.课程链接为:https://www.coursera.org/course/ml (一)异常检测(Anomaly Detection) 举个栗子: 我们有一些飞机发动机特征的sample:{x(1),x(2),...,x(m)},对于一个新的样本xtest,那么它是异常数…
Andrew NG的Machine learning课程地址为:https://www.coursera.org/course/ml 神经网络一直被认为是比较难懂的问题,NG将神经网络部分的课程分为了两个星期来介绍,可见Neural Networks内容之多.言归正传,通过之前的学习我们知道,使用非线性的多项式能够帮助我们建立更好的分类模型.但当遇特征非常多的时候,需要训练的参数太多,使得训练非常复杂,使得逻辑回归有心无力. 例如我们有100个特征,如果用这100个特征来构建一个非线性的多项式模…
本栏目内容来自Andrew NG老师的公开课:https://class.coursera.org/ml/class/index 一般而言, 人工神经网络与经典计算方法相比并非优越, 只有当常规方法解决不了或效果不佳时人工神经网络方法才能显示出其优越性.尤其对问题的机理不甚了解或不能用数学模型表示的系统,如故障诊断.特征提取和预测等问题,人工神经网络往往是最有利的工具.另一方面, 人工神经网络对处理大量原始数据而不能用规则或公式描述的问题, 表现出极大的灵活性和自适应性. 神经网络模型解决问题的…
最近翻Peter Harrington的<机器学习实战>,看到Logistic回归那一章有点小的疑问. 作者在简单介绍Logistic回归的原理后,立即给出了梯度上升算法的code:从算法到代码跳跃的幅度有点大,作者本人也说了,这里略去了一个简单的数学推导. 那么其实这个过程在Andrew Ng的机器学习公开课里也有讲到.现在回忆起来,大二看Andrew的视频的时候心里是有这么一个疙瘩(Andrew也是跳过了一步推导) 这里就来讲一下作者略去了怎样的数学推导,以及,怎么推导. 在此之前,先回顾…
此文是斯坦福大学,机器学习界 superstar - Andrew Ng 所开设的 Coursera 课程:Machine Learning 的课程笔记. 力求简洁,仅代表本人观点,不足之处希望大家探讨. 课程网址:https://www.coursera.org/learn/machine-learning/home/welcome Week 3: Logistic Regression & Regularization 笔记:http://blog.csdn.net/ironyoung/ar…
Andrew NG的Machine learning课程地址为:https://www.coursera.org/course/ml 在Linear Regression部分出现了一些新的名词,这些名词在后续课程中会频繁出现: Cost Function Linear Regression Gradient Descent Normal Equation Feature Scaling Mean normalization 损失函数 线性回归 梯度下降 正规方程 特征归一化 均值标准化 Mode…
coursera上面Andrew NG的Machine learning课程地址为:https://www.coursera.org/course/ml 我曾经使用Logistic Regression方法进行ctr的预测工作,因为当时主要使用的是成型的工具,对该算法本身并没有什么比较深入的认识,不过可以客观的感受到Logistic Regression的商用价值. Logistic Regression Model A. objective function       其中z的定义域是(-I…
出处 以下内容转载于 网友 Fiona Duan,感谢作者分享 (原作的图片显示有问题,所以我从别处找了一些附上,小伙伴们可以看看).最近越来越觉得人工智能,深度学习是一个很好的发展方向,应该也是未来科技的关键核心. 隆重分享,中科院自动化所录制的视频:http://pan.baidu.com/s/1c0vjEIc(英文的,没有中文字幕,考听力了) 7月7日,笔者有幸在中科院自动化所现场听取了Andrew Ng以<Deep Learning:Overview and Trends>的精彩演讲.…
此文是斯坦福大学,机器学习界 superstar - Andrew Ng 所开设的 Coursera 课程:Machine Learning 的课程笔记. 力求简洁,仅代表本人观点,不足之处希望大家探讨. 课程网址:https://www.coursera.org/learn/machine-learning/home/welcome Week 2:Linear Regression with Multiple Variables笔记:http://blog.csdn.net/ironyoung…
我的机器学习系列从现在开始将会结合Andrew Ng老师与sklearn的api是实际应用相结合来写了. 吴恩达(1976-,英文名:Andrew Ng),华裔美国人,是斯坦福大学计算机科学系和电子工程系副教授,人工智能实验室主任.吴恩达是人工智能和机器学习领域国际上最权威的学者之一.吴恩达也是在线教育平台Coursera的联合创始人(with Daphne Koller). 2014年5月16日,吴恩达加入百度,担任百度公司首席科学家,负责百度研究院的领导工作,尤其是Baidu Brain计划…
简介 最近在参加一个利用机器学习来解决安全问题的算法比赛,但是对机器学习的算法一直不了解,所以先了解一下机器学习相关的算法. Andrew Ng就是前段时间从百度离职的吴恩达.关于吴恩达是谁,相信程序员/媛都知道. Andrew Ng的机器学习的公开课其实就是当年吴恩达还在斯坦福大学时在coursera上面开设的一门机器学习的入门的公开课,课程地址链接为Andrew Ng机器学习公开课 Andrew Ng机器学习公开课的评价,可以参考知乎上面的问题如何评价 Coursera 的机器学习 (And…
matlab基础教程--根据Andrew Ng的machine learning整理 基本运算 算数运算 逻辑运算 格式化输出 小数位全局修改 向量和矩阵运算 矩阵操作 申明一个矩阵或向量 快速建立一个矩阵或向量 随机矩阵方阵生成 magic矩阵生成(每行每列相加和相同) 获取矩阵的维度size 获取矩阵的最大维度length 矩阵操作.获取单个元素.行.列.赋值 矩阵append.矩阵元素放到一个列向量中 矩阵运算 矩阵乘法 A*C:根据矩阵乘法公式相乘. A .* B:矩阵元素对应相乘. 矩…
近日,在网易公开课视频网站上看完了<机器学习>课程视频,现做个学后感,也叫观后感吧. 学习时间 从2013年7月26日星期五开始,在网易公开课视频网站上,观看由斯坦福大学Andrew Ng教授主讲的计算机系课程(编号CS229)<机器学习>(网址http://v.163.com/special/opencourse/machinelearning.html)(注:最早是在新浪公开课上发现的这门课,看了前几集没有字幕的视频.后来经由技术群网友的指引才找到网易,看到了全部翻译完的视频)…
原文:http://blog.sina.com.cn/s/blog_593af2a70102uwhl.html 一早出发,8点20就赶到现场, 人越聚越多,Ng提前几分钟到达现场,掌声一片.    Ng的报告总体上提到了五个方向.    1)Deep Learning相比于传统方法的优势           首先,一个很直观的图,随着训练量的提高,传统方法很快走到天花板,而Deep Learning的效果还能持续走高,后来这个在提问环节也有同学问道,是否会一直提高,Andrew Ng也坦诚需要面…
Andrew Ng机器学习课程笔记(四)之神经网络 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7365730.html 前言 学习了Andrew Ng课程,开始写了一些笔记,现在写完第5章了,先把这5章的内容放在博客中,后面的内容会陆续更新! 这篇博客主要记录Andrew Ng课程第四章和第五章的神经网络,主要介绍前向传播算法,反向传播算法,神经网络的多类分类,梯度校验,参数随机初始化,参数的更新等等 1.神经网络概述…
本栏目来源于Andrew NG老师讲解的Machine Learning课程,主要介绍大规模机器学习以及其应用.包括随机梯度下降法.维批量梯度下降法.梯度下降法的收敛.在线学习.map reduce以及应用实例:photo OCR.课程地址为:https://www.coursera.org/course/ml (一)大规模机器学习 从前面的课程我们知道,如果我们的系统是high variance的,那么增加样本数会改善我们的系统,假设现在我们有100万个训练样本,可想而知,如果使用梯度下降法,…