5.keras-Dropout剪枝操作的应用】的更多相关文章

keras-Dropout剪枝操作的应用 1.载入数据以及预处理 import numpy as np from keras.datasets import mnist from keras.utils import np_utils from keras.models import Sequential from keras.layers import * from keras.optimizers import SGD import os import tensorflow as tf #…
视频学习来源 https://www.bilibili.com/video/av40787141?from=search&seid=17003307842787199553 笔记 使用dropout是要改善过拟合,将训练和测试的准确率差距变小 训练集,测试集结果相比差距较大时,过拟合状态 使用dropout后,每一周期准确率可能不高反而最后一步提升很快,这是训练的时候部分神经元工作,而最后的评估所有神经元工作 正则化同样是改善过拟合作用 Softmax一般用在神经网络的最后一层 import n…
# 建立神经网络模型 model = keras.Sequential([ keras.layers.Flatten(input_shape=(28, 28)), # 将输入数据的形状进行修改成神经网络要求的数据形状 keras.layers.Dense(128, activation=tf.nn.relu), # 定义隐藏层,128个神经元的网络层 keras.layers.Dropout(0.2), keras.layers.Dense(10, activation=tf.nn.softma…
之前学习了tensorflow2.0的小伙伴可能会遇到一些问题,就是在读论文中的代码和一些实战项目往往使用keras+tensorflow1.0搭建, 所以本次和大家一起分享keras如何搭建神经网络. 当然这里也有tensorflow2.0的链接哦----->>>>点我进入 keras搭建神经网络快速入门笔记目录如下: 1.构建基本简单网络实现线性回归 2.构建基本网络实现非线性回归 3.简单实现Mnist数据集分类 4.交叉熵的介绍和应用 5.Dropout剪枝操作的应用 6.…
本文为转载,作者:Microstrong0305 来源:CSDN 原文:https://blog.csdn.net/program_developer/article/details/80737724 1. Dropout简介 1.1 Dropout出现的原因 在机器学习的模型中,如果模型的参数太多,而训练样本又太少,训练出来的模型很容易产生过拟合的现象.在训练神经网络的时候经常会遇到过拟合的问题,过拟合具体表现在:模型在训练数据上损失函数较小,预测准确率较高:但是在测试数据上损失函数比较大,预…
1. Dropout简介 1.1 Dropout出现的原因 在机器学习的模型中,如果模型的参数太多,而训练样本又太少,训练出来的模型很容易产生过拟合的现象. 在训练神经网络的时候经常会遇到过拟合的问题,过拟合具体表现在:模型在训练数据上损失函数较小,预测准确率较高:但是在测试数据上损失函数比较大,预测准确率较低. 过拟合是很多机器学习的通病.如果模型过拟合,那么得到的模型几乎不能用.为了解决过拟合问题,一般会采用模型集成的方法,即训练多个模型进行组合.此时,训练模型费时就成为一个很大的问题,不仅…
1. Dropout简介 1.1 Dropout出现的原因 在机器学习的模型中,如果模型的参数太多,而训练样本又太少,训练出来的模型很容易产生过拟合的现象.在训练神经网络的时候经常会遇到过拟合的问题,过拟合具体表现在:模型在训练数据上损失函数较小,预测准确率较高:但是在测试数据上损失函数比较大,预测准确率较低. 过拟合是很多机器学习的通病.如果模型过拟合,那么得到的模型几乎不能用.为了解决过拟合问题,一般会采用模型集成的方法,即训练多个模型进行组合.此时,训练模型费时就成为一个很大的问题,不仅训…
1. Dropout简介 1.1 Dropout出现的原因 在机器学习的模型中,如果模型的参数太多,而训练样本又太少,训练出来的模型很容易产生过拟合的现象. 在训练神经网络的时候经常会遇到过拟合的问题,过拟合具体表现在:模型在训练数据上损失函数较小,预测准确率较高:但是在测试数据上损失函数比较大,预测准确率较低. 过拟合是很多机器学习的通病.如果模型过拟合,那么得到的模型几乎不能用.为了解决过拟合问题,一般会采用模型集成的方法,即训练多个模型进行组合.此时,训练模型费时就成为一个很大的问题,不仅…
去年TensorFlow官方推出了模型优化工具,最多能将模型尺寸减小4倍,运行速度提高3倍. 最近现又有一款新工具加入模型优化"豪华套餐",这就是基于Keras的剪枝优化工具. 训练AI模型有时需要大量硬件资源,但不是每个人都有4个GPU的豪华配置,剪枝优化可以帮你缩小模型尺寸,以较小的代价进行推理. 什么是权重剪枝? 权重剪枝(Weight Pruning)优化,就是消除权重张量中不必要的值,减少神经网络层之间的连接数量,减少计算中涉及的参数,从而降低操作次数. 这样做的好处是压缩了…
"我是要成为海贼王的男人!" 路飞他们伟大航路行程的起点是罗格镇,终点是拉夫德鲁(那里藏匿着"唯一的大秘宝"--ONE PIECE).而航程中间,则是各式各样的岛屿. 因为伟大航路上的气候十分异常,所以来往任意两个岛屿之间的时间差别很大,从A岛到B岛可能需要1天,而从B岛到A岛则可能需要1年.当然,任意两个岛之间的航行时间虽然差别很大,但都是已知的. 现在假设路飞一行从罗格镇(起点)出发,遍历伟大航路中间所有的岛屿(但是已经经过的岛屿不能再次经过),最后到达拉夫德鲁…
Tempter of the Bone Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 125945    Accepted Submission(s): 33969 Problem Description The doggie found a bone in an ancient maze, which fascinated him a…
1. tf.layers.conv2d(input, filter, kernel_size, stride, padding) # 进行卷积操作 参数说明:input输入数据, filter特征图的个数,kernel_size卷积核的大小,stride步长,padding是否补零 2. tf.layers.conv2d_transpose(input, filter, kernel_size, stride, padding) # 进行反卷积操作 参数说明:input输入数据, filter特…
1. Palindrome Partitioning https://leetcode.com/problems/palindrome-partitioning/ Given a string s, partition s such that every substring of the partition is a palindrome. Return all possible palindrome partitioning of s. For example, given s = "aab&…
题目链接 http://poj.org/problem?id=1011 题意 输入n根棍子的长度,将这n根棍子组合成若干根长度相同的棍子,求组合后的棍子的最小长度.这题是poj2362的加强版,思路与poj2362相同,只是在2362的基础上添加了剪枝操作,做这题之前先去做poj2362效果最好. 思路 由于棍子越长,组合时的灵活性越差,所以要先从长棍子开始搜索,则首先要将n根棍子从长到短排序,然后从最长的棍子开始dfs.由于棍子最多可以有64根,不剪枝的话肯定会超时.以下是几种剪枝方法: (1…
论文通过DBTD方法计算过滤阈值,再结合随机剪枝算法对特征值梯度进行裁剪,稀疏化特征值梯度,能够降低回传阶段的计算量,在CPU和ARM上的训练分别有3.99倍和5.92倍的加速效果   来源:晓飞的算法工程笔记 公众号 论文: Accelerating CNN Training by Pruning Activation Gradients 论文地址:https://arxiv.org/abs/1908.00173 Introduction   在训练过程中,特征值梯度的回传和权值梯度的计算占了…
之前一篇笔记: Python机器学习笔记:不得不了解的机器学习知识点(1) 1,什么样的资料集不适合用深度学习? 数据集太小,数据样本不足时,深度学习相对其它机器学习算法,没有明显优势. 数据集没有局部相关特性,目前深度学习表现比较好的领域主要是图像/语音/自然语言处理等领域,这些领域的一个共性是局部相关性.图像中像素组成物体,语音信号中音位组合成单词,文本数据中单词组合成句子,这些特征元素的组合一旦被打乱,表示的含义同时也被改变.对于没有这样的局部相关性的数据集,不适于使用深度学习算法进行处理…
You are given coins of different denominations and a total amount of money amount. Write a function to compute the fewest number of coins that you need to make up that amount. If that amount of money cannot be made up by any combination of the coins,…
Given a collection of numbers that might contain duplicates, return all possible unique permutations. For example,[1,1,2] have the following unique permutations:[1,1,2], [1,2,1], and [2,1,1]. 这道题是之前那道Permutations 全排列的延伸,由于输入数组有可能出现重复数字,如果按照之前的算法运算,会有…
前言:本文的目的是记录sklearn包中GBRT的使用,主要是官网各参数的意义:对于理论部分和实际的使用希望在只是给出出处,希望之后有时间能补充完整 摘要: 1.示例 2.模型主要参数 3.模型主要属性变量 内容: 1.示例>>> import numpy as np>>> from sklearn.metrics import mean_squared_error>>> from sklearn.datasets import make_friedm…
https://zhuanlan.zhihu.com/p/22557068 http://blog.csdn.net/zhjchengfeng5/article/details/7855241 KD树在算法竞赛中主要用来做各种各样的平面区域查询,包含则累加直接返回,相交则继续递归,相离的没有任何贡献也直接返回.可以处理圆,三角形,矩形等判断起来相对容易的平面区域内的符合加法性质的操作. 比如查询平面内欧几里得距离最近的点的距离. kdtree其实有点像搜索,暴力+剪枝. 每次从根结点向下搜索,并…
课程地址:https://class.coursera.org/ntumltwo-002/lecture 重要!重要!重要~ 一.随机森林(RF) 1.RF介绍 RF通过Bagging的方式将许多个CART组合在一起,不考虑计算代价,通常树越多越好. RF中使用CART没有经过剪枝操作,一般会有比较大的偏差(variance),结合Bagging的平均效果可以降低CART的偏差. 在训练CART的时候,使用有放回的随机抽取样本(bootstraping).随机的抽取样本的特征.甚至将样本特征通过…
首先,我们要祝贺小李下出第78手的“神之一手”,这一手堪称前无古人后无来者,尤其是结合了阿尔法狗自暴自弃的表现.小李说过他的失败并不是人类的失败,同样,小李的胜利也只是属于他一人的胜利. 然而人类在围棋领域会不会最终被机器所击败这一问题,在旧摩尔定律失效的情况下还不应急着下定论,看完这篇文章后有助于形成你自己的观点. 首先我们看到这张图.有人一定会觉得奇怪了:为什么左边的是英国国旗呢?Google难道不是美国的公司吗? 原因很简单,alphago是英国的deepmind公司研发的.2014年1月…
继上篇文章决策树之 ID3 与 C4.5,本文继续讨论另一种二分决策树 Classification And Regression Tree,CART 是 Breiman 等人在 1984 年提出的,是一种应用广泛的决策树算法,不同于 ID3 与 C4.5, CART 为一种二分决策树, 每次对特征进行切分后只会产生两个子节点,而ID3 或 C4.5 中决策树的分支是根据选定特征的取值来的,切分特征有多少种不同取值,就有多少个子节点(连续特征进行离散化即可).CART 设计回归与分类,接下来将分…
决策树(Decision Tree)是一种基本的分类与回归方法(ID3.C4.5和基于 Gini 的 CART 可用于分类,CART还可用于回归).决策树在分类过程中,表示的是基于特征对实例进行划分,将其归到不同的类别.决策树的主要优点是模型可读.易于理解.分类速度快.建模与预测速度快.本文主要介绍 Quinlan 在 1986 年提出的 ID3 算法与 1993 年提出的 C4.5 算法.下面首先对决策树模型进行简单介绍. 决策树模型 决策树是由树节点与边组成的,其节点有两种类型,内部节点和叶…
数据挖掘进阶之序列模式挖掘GSP算法 绪 继续数据挖掘方面算法的讲解,前面讲解了数据挖掘中关联规则算法FP-Growth的实现.此篇博文主要讲解基于有趣性度量标准的GSP序列模式挖掘算法.有关论文后期进行补充.实现思路与前面优化的FP-Growth算法一致,首先实现简单的GSP算法,通过认真阅读源码,在理解的基础之上进行优化.优化后的算法将在性能方面与原算法进行对比,以此突出此算法的优良性能.下面进行简要介绍: 原理介绍 GSP算法是一种非常有效的序列模式挖掘算法,该算法使用一种称作为逐层搜索的…
版权声明:本文为博主原创文章,转载请注明出处. 先解释下什么是8皇后问题:在8×8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行.同一列或同一斜线上,问有多少种摆法.在不考虑翻转和旋转等价的情况下,8皇后问题共有96个不同的解. 而n皇后问题就是将8*8的棋盘换为n*n的棋盘,同时摆放n个皇后使之不能相互攻击. 常用的解法是回溯法,通过不断递归的尝试来一个一个放置棋子,这种方法其实规避了很多不成立的情况,所以控制了一些解空间的范围,但是这种方法试图在一段程序当中将所…
题目: Given a 2D board and a list of words from the dictionary, find all words in the board. Each word must be constructed from letters of sequentially adjacent cell, where "adjacent" cells are those horizontally or vertically neighboring. The sam…
数据挖掘中有一个很重要的应用,就是Frequent Pattern挖掘,翻译成中文就是频繁模式挖掘.这篇博客就想谈谈频繁模式挖掘相关的一些算法. 定义 何谓频繁模式挖掘呢?所谓频繁模式指的是在样本数据集中频繁出现的模式.举个例子,比如在超市的交易系统中,记载了很多次交易,每一次交易的信息包括用户购买的商品清单.如果超市主管是个有心人的话,他会发现尿不湿,啤酒这两样商品在许多用户的购物清单上都出现了,而且频率非常高.尿不湿,啤酒同时出现在一张购物单上就可以称之为一种频繁模式,这样的发掘就可以称之为…
摘要:本文讨论了最长公共子串的的相关算法的时间复杂度,然后在后缀数组的基础上提出了一个时间复杂度为o(n^2*logn),空间复杂度为o(n)的算法.该算法虽然不及动态规划和后缀树算法的复杂度低,但其重要的优势在于可以编码简单,代码易于理解,适合快速实现. 首先,来说明一下,LCS通常指的是公共最长子序列(Longest Common Subsequence,名称来源参见<算法导论>原书第3版p223),而不是公共最长子串(也称为最长公共子串). 最长公共子串问题是在文本串.模式串中寻找共有的…
G - 深搜 基础 Crawling in process... Crawling failed Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Submit Status Description BackgroundThe knight is getting bored of seeing the same black and white squares again and again a…