题目链接:https://www.luogu.com.cn/problem/P1339 朴素dijkstra算法的复杂度是O(n^2),用堆优化的dijkstra复杂度是O(nlogn)的.在本题中前向星存边的时间消耗大约是113ms,空间消耗大约是8M,而在矩阵存边中时间消耗大约是125ms,空间消耗大约是30M,可见前向星是非常节省空间的.但点多边少的时候还是用前向星比较好. 代码如下: #include<bits/stdc++.h> using namespace std; typede…
题目背景 本题测试数据为随机数据,在考试中可能会出现构造数据让SPFA不通过,如有需要请移步 P4779. 题目描述 如题,给出一个有向图,请输出从某一点出发到所有点的最短路径长度. 输入格式 第一行包含三个整数N.M.S,分别表示点的个数.有向边的个数.出发点的编号. 接下来M行每行包含三个整数Fi.Gi.Wi,分别表示第i条有向边的出发点.目标点和长度. 输出格式 一行,包含N个用空格分隔的整数,其中第i个整数表示从点S出发到点i的最短路径长度(若S=i则最短路径长度为0,若从点S无法到达点…
推荐YCB的总结 推荐你谷ysn等巨佬的详细题解 大致流程-- dfs求出当前树的重心 对当前树内经过重心的路径统计答案(一条路径由两条由重心到其它点的子路径合并而成) 容斥减去不合法情况(两条子路径在重心的子树内就已经相交) 删除重心(打上永久标记),对子树继续处理,转1 求重心是板子,算答案的方法要依题而定,一般都要容斥. 模板题洛谷传送门 calc函数中,头尾两个指针扫的计数方法也是一种套路 因为要sort,所以复杂度\(O(n\log^2n)\),不过蒟蒻实测你谷数据\(k\)不超过\(…
题目链接:https://vjudge.net/problem/HDU-2544 题意: 题目要求找到节点1到节点n之间的一条最短路 分析: Dijkstra模板题 单源最短路径,可以用dijkstra(当然Floyd或者其他也可以),首先初始化节点间距离数组map和访问记录数组vis,然后录入并存储当前已知点间距离,再使用dijsktra算法以起始点为中心向外层层扩展(广度优先搜索思想),不断更新最短距离,直到扩展到终点为止.最后得到的dis[n]即为起点1至终点n的最短距离. 代码如下: #…
题目链接: 洛谷 题目大意:求同余方程组 $x\equiv b_i(mod\ a_i)$ 的最小正整数解. $1\leq n\leq 10^5,1\leq a_i\leq 10^{12},0\leq b_i\leq 10^{12},b_i<a_i$,保证有解,答案不超过 $10^{18}$. (其实我没打成方程组形式是因为我 $latex$ 太差) 既然是模板就直接讲方法.假设不一定有解. 方法:每次将前 $i-1$ 个方程合并后的方程与第 $i$ 个方程合并,直到 $n$ 个方程全部合并完.…
概述 多项式求逆元是一个非常重要的知识点,许多多项式操作都需要用到该算法,包括多项式取模,除法,开跟,求ln,求exp,快速幂.用快速傅里叶变换和倍增法可以在$O(n log n)$的时间复杂度下求出一个$n$次多项式的逆元. 前置技能 快速数论变换(NTT),求一个数$x$在模$p$意义下的乘法逆元. 多项式的逆元 给定一个多项式$A(x)$,其次数为$deg_A$,若存在一个多项式$B(x)$,使其满足$deg_B≤deg_A$,且$A(x)\times B(x) \equiv 1 (mod…
传送门:http://acm.hdu.edu.cn/showproblem.php?pid=2544 思路:最短路的模板题 Dijkstra 算法是一种类似于贪心的算法,步骤如下: 1.当到一个点时,图上部分的点的最短距离已确定,部分点的最短距离未确定. 2.选一个所有未确定点中离源点最近的点,把它认为成最短距离. 3.再把这个点所有出边遍历一边,更新所有的点. 朴素算法(适用于稠密图 复杂度) #include<iostream> #include<cstdio> using n…
题目描述 如题,给出一个N次函数,保证在范围[l,r]内存在一点x,使得[l,x]上单调增,[x,r]上单调减.试求出x的值. 输入输出格式 输入格式: 第一行一次包含一个正整数N和两个实数l.r,含义如题目描述所示. 第二行包含N+1个实数,从高到低依次表示该N次函数各项的系数. 输出格式: 输出为一行,包含一个实数,即为x的值.四舍五入保留5位小数. 输入输出样例 输入样例#1: 3 -0.9981 0.5 1 -3 -3 1 输出样例#1: -0.41421 说明 时空限制:50ms,12…
洛谷题目传送门 只是一个经过了蛇皮压行的模板... 总结?%%%yyb%%% #include<bits/stdc++.h> #define LL long long #define RG register #define R RG int #define G if(++ip==ie)fread(ip=buf,1,S,stdin) #define For \ R i,j,k,d; \ for(i=2;i<=N;i<<=1) \ for(d=i>>1,j=0;j&l…
分数规划是这样一个东西: 给定若干元素,每个元素有两个属性值\(a_i,b_i\),在满足题目要求的某些限制下选择若干元素并求出\(\frac{\sum a}{\sum b}\)的最大值. 如果没有限制的话,肯定是贪心的选. 假设当前选择了一个解\(x_0\),却并不是\(\frac{\sum a}{\sum b}\)的最大值,我们有 \[\frac{\sum a}{\sum b}>x_0\] 进而 \[\sum a-bx_0>0\] 这时候我们要求的东西变成了\(a-bx_0\),每个元素的…