tf.train.MomentumOptimizer 优化器】的更多相关文章

tf.train.MomentumOptimizer( learning_rate, momentum, use_locking=False, use_nesterov=False, name='Momentum' ) 参数: learning_rate: (学习率)张量或者浮点数 momentum: (动量)张量或者浮点数 use_locking: 为True时锁定更新 use_nesterov:  为True时,使用 Nesterov Momentum name:  梯度下降名称,默认为 "…
adaptive moment estimation(自适应矩估计) tf.train.AdamOptimizer( learning_rate=0.001, beta1=0.9, beta2=0.999, epsilon=1e-08, use_locking=False, name='Adam' ) 参数: learning_rate: (学习率)张量或者浮点数 beta1:  浮点数或者常量张量 ,表示 The exponential decay rate for the 1st momen…
tf.train.GradientDescentOptimizer(learning_rate, use_locking=False,name='GradientDescent') 参数: learning_rate: A Tensor or a floating point value. 要使用的学习率 use_locking: 要是True的话,就对于更新操作(update operations.)使用锁 name: 名字,可选,默认是"GradientDescent" minim…
Training | TensorFlow tf 下以大写字母开头的含义为名词的一般表示一个类(class) 1. 优化器(optimizer) 优化器的基类(Optimizer base class)主要实现了两个接口,一是计算损失函数的梯度,二是将梯度作用于变量.tf.train 主要提供了如下的优化函数: tf.train.Optimizer tf.train.GradientDescentOptimizer tf.train.AdadeltaOpzimizer Ada delta tf.…
tensorflow中的优化器主要是各种求解方程的方法,我们知道求解非线性方程有各种方法,比如二分法.牛顿法.割线法等,类似的,tensorflow中的优化器也只是在求解方程时的各种方法. 比较常用的是:·tf.train.GradientDescentOptimizer()·梯度下降优化器,之前我们一直在使用. 又比如:tf.train.MomentumOptimizer,它会有短时记忆的优化功能. 更多的关于优化器的文档参考(需FQ):https://www.tensorflow.org/a…
Tensorflow:1.6.0 优化器(reference:https://blog.csdn.net/weixin_40170902/article/details/80092628) I:  tf.train.GradientDescentOptimizer  Tensorflow中实现梯度下降算法的优化器. 梯度下降:(1)标准梯度下降GD(2)批量梯度下降BGD(3)随机梯度下降SGD (1)标准梯度下降:学习训练的模型参数为W,代价函数为J(W),则代价函数关于模型参数的偏导数即相关…
目前最流行的5种优化器:Momentum(动量优化).NAG(Nesterov梯度加速).AdaGrad.RMSProp.Adam,所有的优化算法都是在原始梯度下降算法的基础上增加惯性和环境感知因素进行持续优化 Momentum优化 momentum优化的一个简单思想:考虑物体运动惯性,想象一个保龄球在光滑表面滚下一个平缓的坡度,最开始会很慢,但是会迅速地恢复动力,直到达到最终速度(假设又一定的摩擦力核空气阻力) momentum优化关注以前的梯度是多少,公式: \((1)m \leftarro…
一.TensorFlow中的优化器 tf.train.GradientDescentOptimizer:梯度下降算法 tf.train.AdadeltaOptimizer tf.train.AdagradOptimizer tf.train.MomentumOptimizer:动量梯度下降算法 tf.train.AdamOptimizer:自适应矩估计优化算法 tf.train.RMSPropOptimizer tf.train.AdagradDAOptimizer tf.train.FtrlO…
0. tf.train.Optimizer tensorflow 里提供了丰富的优化器,这些优化器都继承与 Optimizer 这个类.class Optimizer 有一些方法,这里简单介绍下: 0.1. minimize minimize( loss, global_step=None, var_list=None, gate_gradients=GATE_OP, aggregation_method=None, colocate_gradients_with_ops=False, name…
高中数学学过,函数在一阶导数为零的地方达到其最大值和最小值.梯度下降算法基于相同的原理,即调整系数(权重和偏置)使损失函数的梯度下降. 在回归中,使用梯度下降来优化损失函数并获得系数.本节将介绍如何使用 TensorFlow 的梯度下降优化器及其变体. 按照损失函数的负梯度成比例地对系数(W 和 b)进行更新.根据训练样本的大小,有三种梯度下降的变体: Vanilla 梯度下降:在 Vanilla 梯度下降(也称作批梯度下降)中,在每个循环中计算整个训练集的损失函数的梯度.该方法可能很慢并且难以…