DataFrame索引和切片】的更多相关文章

import numpy as np import pandas as pd from pandas import DataFrame, Seriesdf = DataFrame(data=np.random.randint(0,100,size=(8,6))) #索引 df[0] #df[索引号] df[[1,2,3]] #df[[索引号,索引号]] #批量取出多列 df.iloc[0] #df.iloc[行索引] df.iloc[[1,2]] df.iloc[1,2] #取出指定元素 df.…
一.实验文档准备 1.安装 tushare pip install tushare 2.启动ipython C:\Users\Administrator>ipython Python 3.7.0 (default, Jun 28 2018, 08:04:48) [MSC v.1912 64 bit (AMD64)] Type 'copyright', 'credits' or 'license' for more information IPython 7.0.1 -- An enhanced…
array,list,dataframe索引切片操作 2016年07月19日——智浪文档 list,一维,二维array,datafrme,loc.iloc.ix的简单探讨 Numpy数组的索引和切片介绍: 从最基础的list索引开始讲起,我们先上一段代码和结果: a = [0,1,2,3,4,5,6,7,8,9] a[:5:-1] #step < 0,所以start = 9 a[0:5:-1] #指定了start = 0 a[1::-1] #step < 0,所以stop = 0 输出: […
Pandas层次化索引 1. 创建多层索引 隐式索引: 常见的方式是给dataframe构造函数的index参数传递两个或是多个数组 Series也可以创建多层索引 Series多层索引 B =Series(np.random.randint(0,150,size=10),index=pd.MultiIndex.from_product([list("ABCDE"),["期中","期末"]])) B Dataframe多层索引的创建(推荐使用)…
索引和切片 一维数组 一维数组很简单,基本和列表一致. 它们的区别在于数组切片是原始数组视图(这就意味着,如果做任何修改,原始都会跟着更改). 这也意味着,如果不想更改原始数组,我们需要进行显式的复制,从而得到它的副本(.copy()). import numpy as np #导入numpy arr = np.arange(10) #类似于list的range() arr Out[3]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) arr[4] #索引(注意是从…
Python 中原生的数组就支持使用方括号([])进行索引和切片操作,Numpy 自然不会放过这个强大的特性.  单个元素索引 1-D数组的单元素索引是人们期望的.它的工作原理与其他标准Python序列一样.它是从0开始的,并且接受负索引来从数组的结尾进行索引. import numpy as np a = np.arange(10) a Out[130]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) a[3] Out[131]: 3 a[-2] Out[132]…
1.一维数组索引与切片#创建一维数组arr1d = np.arange(10)print(arr1d) 结果:[0 1 2 3 4 5 6 7 8 9] #数组的索引从0开始,通过索引获取第三个元素arr1d[2] 结果:2 #切片,左闭右开区间,从索引3开始,直到索引7结束 arr1d[3:8] 结果:array([3, 4, 5, 6, 7]) #数组脚标由右往左是从-1开始,每向左一位脚标数字减1,获取最后一个元素arr1d[-1] #等价arr1d[9] 结果:9 #将标量赋值给切片,会…
一:数据类型 1):int     1,2,3用于计算 2):bool    ture  false  用于判断,也可做为if的条件 3):str     用引号引起来的都是str 存储少量数据,进行操作 4):list   储存大量数据.[1,2,3,‘达人’,[1,2,3,90]] 5):元组   (1,2,3,‘第三方’)元组又叫只读列表,不能修改. 6):字典:dict,大量关系型的数据写在字典里 字典{‘name’:’li’,’age’=’12’} 字典{‘li’:[身高,体重,‘张三…
目录 (一)数组的索引与切片 1.说明: 2.实例: (二)多维数组的索引与切片 1.说明: 2.实例: 目录: 1.一维数组的索引与切片 2.多维数组的索引与切片 (一)数组的索引与切片 1.说明: (1)索引:array[x] (1)从左到右: 0~ n-1, 第一个到最后一个 (2)从右到左:-1~ -n,最后一个到第一个 (2)切片:array[起:终:步长] 在python里数据的切片都不包括"终"的数据 2.实例: (二)多维数组的索引与切片 1.说明: (1)索引: 在一…
NumPy学习(索引和切片,合并,分割,copy与deep copy) 目录 索引和切片 合并 分割 copy与deep copy 索引和切片 通过索引和切片可以访问以及修改数组元素的值 一维数组 程序示例 import numpy as np #索引与切片 array=np.arange(3,15) print(array) print(array[3])#数组下标为3的元素 print('\n') print(array[1:3])#取从下标1到下标3,不包括下标3 print(array[…