定义$Gcd(n)=gcd(\binom{n}{1},\binom{n}{2}...\binom{n}{n-1})$,$f(n)=\sum_{i=3}^{n}{Gcd(i)}$,其中$(3<=n<=1000000)$. 由于组合数是二项式,Gcd()则是把首位两项去掉后所有项间进行gcd,那么我们可知当n为素数时,根据组合数公式,该素数不可能被其分母阶乘中的某个数除掉,那么每项都有该素数留下来,所以$Gcd(p) = p$,再推广,如果该数是某单个素数的幂指倍,那么同理仍然会有素数留下来所以$…