Spark Launcher】的更多相关文章

public static void main(String[] argsArray) throws Exception { //org.apache.spark.launcher.Main checkArgument(argsArray.length > 0, "Not enough arguments: missing class name."); /**  * java -cp spark_home/lib/spark-assembly-1.6.0-hadoop2.6.0.…
Spark官方文档 - 中文翻译 Spark版本:1.6.0 转载请注明出处:http://www.cnblogs.com/BYRans/ 1 概述(Overview) 2 引入Spark(Linking with Spark) 3 初始化Spark(Initializing Spark) 3.1 使用Spark Shell(Using the Shell) 4 弹性分布式数据集(RDDs) 4.1 并行集合(Parallelized Collections) 4.2 外部数据库(Externa…
Spark shell是一个特别适合快速开发Spark原型程序的工具,可以帮助我们熟悉Scala语言.即使你对Scala不熟悉,仍然可以使用这个工具.Spark shell使得用户可以和Spark集群交互,提交查询,这便于调试,也便于初学者使用Spark. 感受到Spark shell是如此的方便,因为它很大程度上基于Scala REPL(Scala 交互式shell,即Scala解释器),并继承了Scala REPL(读取-求值-打印-循环)(Read-Evaluate-Print-Loop)…
本文档基于Spark2.0,对spark启动脚本进行分析. date:2016/8/3 author:wangxl Spark配置&启动脚本分析 我们主要关注3类文件,配置文件,启动脚本文件以及自带shell. 1 文件概览 conf/ ├── docker.properties.template ├── fairscheduler.xml.template ├── log4j.properties.template ├── metrics.properties.template ├── sla…
有了前面spark-shell的经验,看这两个脚本就容易多啦.前面总结的Spark-shell的分析可以参考: Spark源码分析之Spark Shell(上) Spark源码分析之Spark Shell(下) Spark-submit if [ -z "${SPARK_HOME}" ]; then export SPARK_HOME="$(cd "`dirname "$0"`"/..; pwd)" fi # disable…
Spark 编程指南 概述 Spark 依赖 初始化 Spark 使用 Shell 弹性分布式数据集 (RDDs) 并行集合 外部 Datasets(数据集) RDD 操作 基础 传递 Functions(函数)给 Spark 理解闭包 示例 Local(本地)vs. cluster(集群)模式 打印 RDD 的 elements 与 Key-Value Pairs 一起使用 Transformations(转换) Actions(动作) Shuffle 操作 Background(幕后) 性能…
最近看到有几个Github友关注了Streaming的监控工程--Teddy,所以思来想去还是优化下代码,不能让别人看笑话,是不.于是就想改在一下之前最丑陋的一个地方--任务提交 本博客内容基于Spark2.2版本~在阅读文章并想实际操作前,请确保你有: 一台配置好Spark和yarn的服务器 支持正常spark-submit --master yarn xxxx的任务提交 老版本 老版本任务提交是采用启动本地进程,执行脚本spark-submit xxx的方式做的.其中一个关键的问题就是获得提…
一些名词概念 AM : ApplicationMaster RM : ResourceManager NM : NodeManager Backend : 后台 RpcEnv : RPC 进程和进程的通信协议 RpcEndpoint : 终端 constructor -> onStart -> receive* -> onStop RpcEndpointRef :终端引用 NettyRpcEnv RpcEndpointAddress NettyRpcEndpointRef ThreadS…
spark 2.1.1 最近spark任务(spark on yarn)有一个报错 Diagnostics: Container [pid=5901,containerID=container_1542879939729_30802_01_000001] is running beyond physical memory limits. Current usage: 11.0 GB of 11 GB physical memory used; 12.2 GB of 23.1 GB virtual…