Spark Streaming和Kafka集成深入浅出】的更多相关文章

写在前面 本文主要介绍Spark Streaming基本概念.kafka集成.Offset管理 本文主要介绍Spark Streaming基本概念.kafka集成.Offset管理 一.概述 Spark  Streaming顾名思义是spark的流式处理框架,是面向海量数据实现高吞吐量.高可用的分布式实时计算.关于spark的安装可以参考Spark入门.Spark Streaming并非像Storm那样是真正的流式计算,两者的处理模型在根本上有很大不同:Storm每次处理一条消息,更多详细信息可…
Spark Streaming与Kafka集成 1.介绍 kafka是一个发布订阅消息系统,具有分布式.分区化.多副本提交日志特点.kafka项目在0.8和0.10之间引入了一种新型消费者API,注意选择正确的包以获得相应的特性.每个版本都是向后兼容的,因此0.8可以兼容0.9和0.10,但是0.10不能兼容早期版本.0.8支持python.Receiver流和Direct流,不支持偏移量提交API以及动态分区订阅,0.10不支持python和Receiver流,支持Direct流.偏移量提交A…
前言 Spark Streaming 诞生于2013年,成为Spark平台上流式处理的解决方案,同时也给大家提供除Storm 以外的另一个选择.这篇内容主要介绍Spark Streaming 数据接收流程模块中与Kafka集成相关的功能. Spark Streaming 与 Kafka 集成接受数据的方式有两种: Receiver-based Approach Direct Approach (No Receivers) 我们会对这两种方案做详细的解析,同时对比两种方案优劣.选型后,我们针对Di…
本课分2部分讲解: 第一部分,讲解Kafka的概念.架构和用例场景: 第二部分,讲解Kafka的安装和实战. 由于时间关系,今天的课程只讲到如何用官网的例子验证Kafka的安装是否成功.后续课程会接着讲解如何集成Spark Streaming和Kafka. 一.Kafka的概念.架构和用例场景 http://kafka.apache.org/documentation.html#introdution 1.Kafka的概念 Apache Kafka是分布式发布-订阅消息系统.它最初由Linked…
spark streaming 对接kafka 有两种方式: 参考: http://group.jobbole.com/15559/ http://blog.csdn.net/kwu_ganymede/article/details/50314901 Approach 1: Receiver-based Approach 基于receiver的方案: 这种方式使用Receiver来获取数据.Receiver是使用Kafka的高层次Consumer API来实现的.receiver从Kafka中获…
场景:使用Spark Streaming接收Kafka发送过来的数据与关系型数据库中的表进行相关的查询操作: Kafka发送过来的数据格式为:id.name.cityId,分隔符为tab zhangsan lisi wangwu zhaoliu MySQL的表city结构为:id int, name varchar bj sz sh 本案例的结果为:select s.id, s.name, s.cityId, c.name from student s join city c on s.city…
基于Receivers的方法 这个方法使用了Receivers来接收数据.Receivers的实现使用到Kafka高层次的消费者API.对于所有的Receivers,接收到的数据将会保存在Spark executors中,然后由Spark Streaming启动的Job来处理这些数据. 然而,在默认的配置下,这种方法在失败的情况下会丢失数据,为了保证零数据丢失,你可以在Spark Streaming中使用WAL日志,这是在Spark 1.2.0才引入的功能,这使得我们可以将接收到的数据保存到WA…
前言 在游戏项目中,需要对每天千万级的游戏评论信息进行词频统计,在生产者一端,我们将数据按照每天的拉取时间存入了Kafka当中,而在消费者一端,我们利用了spark streaming从kafka中不断拉取数据进行词频统计.本文首先对spark streaming嵌入kafka的方式进行归纳总结,之后简单阐述Spark streaming+kafka在舆情项目中的应用,最后将自己在Spark Streaming+kafka的实际优化中的一些经验进行归纳总结.(如有任何纰漏欢迎补充来踩,我会第一时…
当我们正确地部署好Spark Streaming,我们就可以使用Spark Streaming提供的零数据丢失机制.为了体验这个关键的特性,你需要满足以下几个先决条件: 1.输入的数据来自可靠的数据源和可靠的接收器: 2.应用程序的metadata被application的driver持久化了(checkpointed ); 3.启用了WAL特性(Write ahead log). 下面我将简单地介绍这些先决条件. 可靠的数据源和可靠的接收器 对于一些输入数据源(比如Kafka),Spark S…
转载:https://www.iteblog.com/archives/1322.html Apache Kafka是一个分布式的消息发布-订阅系统.可以说,任何实时大数据处理工具缺少与Kafka整合都是不完整的.本文将介绍如何使用Spark Streaming从Kafka中接收数据,这里将会介绍两种方法:(1).使用Receivers和Kafka高层次的API:(2).使用Direct API,这是使用低层次的KafkaAPI,并没有使用到Receivers,是Spark 1.3.0中开始引入…