划分关系 姑且这么叫着 设满足性质 \(A\) 的集合为 \(S_A\),每个元素有标号 如果 \(S_B\) 是由若干个 \(S_A\) 组成的一个大集合 设 \(a_i\) 表示大小为 \(i\) 的 \(S_A\) 的个数 设 \(b_i\) 表示大小为 \(i\) 的 \(S_B\) 的个数 构造指数级生成函数 \[A(x)=\sum_{i=0}^{\infty}a_i\frac{x^i}{i!}\] \[B(x)=\sum_{i=0}^{\infty}b_i\frac{x^i}{i!}…
显然构造出生成函数,对体积v的物品,生成函数为1+xv+x2v+……=1/(1-xv).将所有生成函数乘起来得到的多项式即为答案,设为F(x),即F(x)=1/∏(1-xvi).但这个多项式的项数是Σvi级别的,无法直接分治FFT卷起来. 我们要降低多项式的次数,于是考虑取对数,化乘为加,得到lnF(x)=-Σln(1-xvi).只要对每个多项式求出ln加起来再exp回去即可. 考虑怎么对这个特殊形式的多项式求ln.对ln(1-xv)求导,得ln(1-xv)'=(1-xv)'/(1-xv)=-v…
题面 给定 n , k n,k n,k ,求长度为 n n n 逆序对个数为 k k k 的排列个数,对 1 e 9 + 7 \rm1e9+7 1e9+7 取模. 1 ≤ n , k ≤ 100   000 1\leq n,k\leq 100\,000 1≤n,k≤100000 . 题解 首先,不要看到逆序对就手忙脚乱,它其实是可控的. 令 d i d_i di​ 为第 i i i 个数前面比它大的数的个数,满足条件 d i ∈ [ 0 , i ) d_i\in[0,i) di​∈[0,i) .…
题目背景 付公主有一个可爱的背包qwq 题目描述 这个背包最多可以装10^5105大小的东西 付公主有n种商品,她要准备出摊了 每种商品体积为Vi,都有10^5105件 给定m,对于s\in [1,m]s∈[1,m],请你回答用这些商品恰好装s体积的方案数 输入输出格式 输入格式: 第一行n,m 第二行V1~Vn 输出格式: m行,第i行代表s=i时方案数,对998244353取模 输入输出样例 输入样例#1: 2 4 1 2 输出样例#1: 1 2 2 3 说明 对于30%的数据,n<=300…
正题 题目链接:https://www.luogu.com.cn/problem/P4389 题目大意 \(n\)种物品,第\(i\)种大小为\(v_i\),数量无限.对于每个\(s\in[1,m]\)求刚好填满\(s\)容量的方案数. \(1\leq n,m\leq 10^5\) 解题思路 统计和为一定值的方案数,好像可以生成函数做? 每种物品大小\(v\)有一个生成函数 \[F(x)=\sum_{i\geq 0}x^{i\times v}=\frac{1}{1-x^v} \] 然后所有生成函…
Description: \(1<=n,k<=1e5,mod~1e9+7\) 题解: 考虑最经典的排列dp,每次插入第\(i\)大的数,那么可以增加的逆序对个数是\(0-i-1\). 不难得到生成函数: \(Ans=\prod_{i=0}^{n-1}(\sum_{j=0}^ix^j)[x^k]\) \(=\prod_{i=1}^{n}{1-x^i\over 1-x}[x^k]\) 分母是一个经典的生成函数: \({1\over 1-x}^n=(\sum_{i>=0}x^i)^n=\sum…
传送门 神仙题-- 考虑计算三个部分:1.\(n\)个点的森林的数量,这个是期望的分母:2.\(n\)个点的所有森林中存在最短路的点对的最短路径长度之和:3.\(n\)个点的所有路径中存在最短路的点对的个数之和,这个是用来计算需要取到\(m\)的点对的数量. 对于1,这个就直接对着树的数量的EGF做多项式exp即可.因为点之间有序所以用EGF,\(n\)个点的树的数量由Cayley定理就是\(n^{n-2}\). 对于3,考虑枚举一个连通块大小,那么这种连通块大小的所有树的存在最短路的点对之和就…
正题 题目链接:https://www.luogu.com.cn/problem/P5748 题目大意 求将\(n\)的排列分成若干个无序非空集合的方案. 输出答案对\(998244353\)取模. \(1\leq n\leq 10^5,1\leq T\leq 1000\) 解题思路 就是求划分数 分成\(i\)个集合的方案是\((e^x-1)^i\)所以答案的生成函数就是 \[\sum_{i=0}^{\infty}\frac{(e^x-1)^i}{i!} \] emmmmmmmmmmm...…
题目大意:给你两个多项式$f(x)$和$g(x)$,满足$f(x)=\prod\limits_{i=1}^{n}(a_i+1)$,$g(x)=\prod\limits_{i=1}^{m}(b_i+1)$. 现在给你一个多项式$h(x)$,满足$h(x)=\prod\limits_{i=1}^{n}\prod\limits_{j=1}^{m}(a_ib_j+1)$ 请输出多项式$h$的前$k$项,在模$998244353$意义下进行. 数据范围:$n,m≤10^5$. 我们现在有: $f(x)=\…
题目大意 有两棵 \(n\) 个点的树 \(T_1\) 和 \(T_2\). 你要给每个点一个权值吗,要求每个点的权值为 \([1,y]\) 内的整数. 对于一条同时出现在两棵树上的边,这条边的两个端点的值相同. 若 \(op=0\),则给你两棵树 \(T_1,T_2\),求方案数. 若 \(op=1\),则给你一棵树 \(T_1\),求对于所有 \(n^{n-2}\) 种 \(T_2\),方案数之和. 若 \(op=2\),则求对于所有的 \(T_1,T_2\),求方案数之和. \(n\leq…