新手入门深度学习,选择 TensorFlow 有哪些益处? 佟达:首先,对于新手来说,TensorFlow的环境配置包装得真心非常好.相较之下,安装Caffe要痛苦的多,如果还要再CUDA环境下配合OpenCV使用,对于新手来说,基本上不折腾个几天是很难搞定的. 其次,基于TensorFlow的教学资源非常多,中英文的都有,这对于新手也是非常有帮助的.Google做社区非常有一套,在中国有专门的一群人,会在第一时间把Google的开发者相关的进展翻译成中文. 另外,由于有Google背书,Ten…
下载:https://pan.baidu.com/s/1qKaDd9PSUUGbBQNB3tkDzw <机器学习实战:基于Scikit-Learn和TensorFlow>高清中文版PDF+高清英文版PDF+源代码 下载:https://pan.baidu.com/s/1IAfr-tigqGE_njrfSATT_w <深度学习之TensorFlow:入门.原理与进阶实战>,李金洪 著. 下载:https://pan.baidu.com/s/1NYYpsxbWBvMn9U7jvj6XS…
无论即将到来的是大数据时代还是人工智能时代,亦或是传统行业使用人工智能在云上处理大数据的时代,作为一个有理想有追求的程序员,不懂深度学习(Deep Learning)这个超热的技术,会不会感觉马上就out了?现在救命稻草来了,<零基础入门深度学习>系列文章旨在讲帮助爱编程的你从零基础达到入门级水平.零基础意味着你不需要太多的数学知识,只要会写程序就行了,没错,这是专门为程序员写的文章.虽然文中会有很多公式你也许看不懂,但同时也会有更多的代码,程序员的你一定能看懂的(我周围是一群狂热的Clean…
前几天把刚拿到了2台GPU机器组装好了,也写了篇硬件配置清单的文章——<深度学习(TensorFlow)环境搭建:(一)硬件选购和主机组装>.这两台也在安装Ubuntu 16.04和1080Ti显卡驱动,在安装Ubuntu的时候,踩过无数个坑,心力憔悴(...(。•ˇ‸ˇ•。)…),因此将踩过的坑以及对于的解决方案汇总出来,让大家少踩那些坑,过程实在是太磨人了. 一.配置 系统:Ubuntu16.04.3 GPU:GTX1080Ti 二.总体流程步骤 安装Ubuntu16.04 安装1080T…
一.硬件采购 近年来,人工智能AI越来越多被人们所了解,尤其是AlphaGo的人机围棋大战之后,机器学习的热潮也随之高涨.最近,公司采购了几批设备,通过深度学习(TensorFlow)来研究金融行业相关问题,学习机器学习我们需要满足一定的硬件要求,本文主要是介绍硬件选购的相关事宜. 现在主力的深度学习都是通过多显卡计算来提升系统的计算能力,所以硬件的采购核心是显卡(GPU),下面是整个硬件采购的清单及大致费用如下: 以上的配置一台设备的总共费用大致:2.8W左右.公司购买了2台,费用大致6W,两…
深度学习与TensorFlow DNN(深度神经网络算法)现在是AI社区的流行词.最近,DNN 在许多数据科学竞赛/Kaggle 竞赛中获得了多次冠军. 自从 1962 年 Rosenblat 提出感知机(Perceptron)以来,DNN 的概念就已经出现了,而自 Rumelhart.Hinton 和 Williams 在 1986 年发现了梯度下降算法后,DNN 的概念就变得可行了.直到最近 DNN 才成为全世界 AI/ML 爱好者和工程师的最爱. 主要原因在于现代计算能力的可用性,如 GP…
深度学习调用TensorFlow.PyTorch等框架 一.开发目标目标 提供统一接口的库,它可以从C++和Python中的多个框架中运行深度学习模型.欧米诺使研究人员能够在自己选择的框架内轻松建立模型,同时也简化了这些模型的产品离子化. 支持TensorFlow.PyTorch.TorchScript和Keras等深度学习框架. 使用一个API从任何支持的框架运行模型,运行TensorFlow模型看起来就像运行PyTorch模型. x = np.array([1, 2, 3, 4]) y =…
紧接着上一篇的文章<深度学习(TensorFlow)环境搭建:(二)Ubuntu16.04+1080Ti显卡驱动>,这篇文章,主要讲解如何安装CUDA+CUDNN,不过前提是我们是已经把NVIDIA显卡驱动安装好了 一.安装CUDA CUDA(Compute Unified Device Architecture),是英伟达公司推出的一种基于新的并行编程模型和指令集架构的通用计算架构,它能利用英伟达GPU的并行计算引擎,比CPU更高效的解决许多复杂计算任务,想使用GPU就必须要使用CUDA.…
[原创 深度学习与TensorFlow 动手实践系列 - 4]第四课:卷积神经网络 - 高级篇 提纲: 1. AlexNet:现代神经网络起源 2. VGG:AlexNet增强版 3. GoogleNet:多维度识别 4. ResNet:机器超越人类识别 5. DeepFace:结构化图片的特殊处理 6. U-Net:图片生成网络 7. 实例:剖析VGG,用模型进行模型参数可视化,特征提取,目标预测 期待目标: 1. 掌握AlexNet结构特点,神经网络各层之间特征传导关系,模型参数总数计算 2…
创建图.启动图 Shift+Tab Tab 变量介绍: F etch Feed 简单的模型构造 :线性回归 MNIST数据集 Softmax函数 非线性回归神经网络   MINIST数据集分类器简单版本 二次代价函数 sigmoid函数 交叉熵代价函数 对数释然代价函数 拟合 防止过拟合 Dropout 优化器 优化器的使用 如何提升准确率? 1.改每批训练多少个 2.改神经网络中间层(神经元层数,每层的个数,每层用的激活函数,权重的初值用随机正态.要不要防止过拟合) 3.改计算loss的函数:…