spark on yarn 资源调度(cdh为例)】的更多相关文章

一.CPU配置: ApplicationMaster 虚拟 CPU内核 yarn.app.mapreduce.am.resource.cpu-vcores ApplicationMaster占用的cpu内核数(Gateway--资源管理 ) //一般设置1个核,如果想启动时候快一点可以多设置核数,但它不管资源分配,所以只要保证任务执行过程中不挂就可以了 容器虚拟 CPU内核 yarn.nodemanager.resource.cpu-vcores //单 个NodeManager 最大能分配的c…
在cdh 上安装spark on yarn 还是比较简单的,不需要独立安装什么模块或者组件. 安装服务 选择on yarn 模式:上面 Spark 在spark 服务中添加 在yarn 服务中添加 getWay 后重新 启动服务端 用hdfs 用户进入 spark bin 目录 cd /opt/cloudera/parcels/CDH/lib/spark/bin 执行 ./spark-submit --class org.apache.spark.examples.SparkPi --maste…
Spark on YARN的原理就是依靠yarn来调度Spark,比默认的Spark运行模式性能要好的多,前提是首先部署好hadoop HDFS并且运行在yarn上,然后就可以开始部署spark on yarn了,假设现在准备环境已经部署完毕,这里是在CDH 环境下部署Spark 除了上面的环境准备,安装Spark前,还应该保证Scala正常安装,基于Scala的情况下,就可以开始部署Spark了, 首先还是解压Spark,安装位置就是/bigdata/spark -bin-hadoop2..t…
大数据体系结构: Spark简介 Spark是整个BDAS的核心组件,是一个大数据分布式编程框架,不仅实现了MapReduce的算子map 函数和reduce函数及计算模型,还提供更为丰富的算子,如filter.join.groupByKey等.是一个用来实现快速而同用的集群计算的平台. Spark将分布式数据抽象为弹性分布式数据集(RDD),实现了应用任务调度.RPC.序列化和压缩,并为运行在其上的上层组件提供API.其底层采用Scala这种函数式语言书写而成,并且所提供的API深度借鉴Sca…
CDH对我们已经封装了,我们如果需要Spark on Yarn,只需要yum安装几个包就可以了. 前面的文章我有写过如果搭建自己内网的CDH Yum服务器,请参考<CDH 5.5.1 Yum源服务器搭建>http://www.cnblogs.com/luguoyuanf/p/56187ea1049f4011f4798ae157608f1a.html 如果没有内网Yarn服务器的,请使用Cloudera的yum服务器. wget https://archive.cloudera.com/cdh5…
本文转自:http://blog.javachen.com/2015/06/09/memory-in-spark-on-yarn.html?utm_source=tuicool 此文解决了Spark yarn-cluster模式运行时,内存不足的问题. Spark yarn-cluster模式运行时,注意yarn.app.mapreduce.am.resource.mb的设置.默认为1G Spark On YARN内存分配 本文主要了解Spark On YARN部署模式下的内存分配情况,因为没有…
就在昨天,北京时间5月30日20点多.Spark 1.0.0最终公布了:Spark 1.0.0 released 依据官网描写叙述,Spark 1.0.0支持SQL编写:Spark SQL Programming Guide 个人认为这个功能对Hive的市场的影响非常小.但对Shark冲击非常大.就像win7和winXP的关系,自相残杀嘛? 这么着急的公布1.x 版是商业行为还是货真价实的体现,让我们拭目以待吧~~~~ 本文是CSDN-撸大湿原创,如要转载请注明出处,谢谢:http://blog…
问题一: 18/03/15 07:59:23 INFO yarn.Client: client token: N/A diagnostics: Application application_1521099425266_0002 failed 2 times due to AM Container for appattempt_1521099425266_0002_000002 exited with exitCode: 1 For more detailed output, check app…
Spark On YARN内存分配 本文主要了解Spark On YARN部署模式下的内存分配情况,因为没有深入研究Spark的源代码,所以只能根据日志去看相关的源代码,从而了解“为什么会这样,为什么会那样”. 说明 按照Spark应用程序中的driver分布方式不同,Spark on YARN有两种模式: yarn-client模式.yarn-cluster模式. 当在YARN上运行Spark作业,每个Spark executor作为一个YARN容器运行.Spark可以使得多个Tasks在同一…
Spark On Yarn的优势 每个Spark executor作为一个YARN容器(container)运行.Spark可以使得多个Tasks在同一个容器(container)里面运行 1. Spark支持资源动态共享,运行于Yarn的框架都共享一个集中配置好的资源池 2. 可以很方便的利用Yarn的资源调度特性来做分类.隔离以及优先级控制负载,拥有更灵活的调度策略 3. Yarn可以自由地选择executor数量 4. Yarn是唯一支持Spark安全的集群管理器,使用Yarn,Spark…