bzoj1211-树的计数】的更多相关文章

1211: [HNOI2004]树的计数 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3432  Solved: 1295[Submit][Status][Discuss] Description 一个有n个结点的树,设它的结点分别为v1, v2, …, vn,已知第i个结点vi的度数为di,问满足这样的条件的不同的树有多少棵.给定n,d1, d2, …, dn,编程需要输出满足d(vi)=di的树的个数. Input 第一行是一个正整数n,表…
1211: [HNOI2004]树的计数 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3432  Solved: 1295[Submit][Status][Discuss] Description 一个有n个结点的树,设它的结点分别为v1, v2, …, vn,已知第i个结点vi的度数为di,问满足这样的条件的不同的树有多少棵.给定n,d1, d2, …, dn,编程需要输出满足d(vi)=di的树的个数. Input 第一行是一个正整数n,表…
裸的prufer结论. 给个小链接prufer序列 ,里面有一个性质4就是本题答案,严谨证明可以上网找一找,如果从多组组合角度理解也可以. 剩下的就是特判,n==1时,du==0,1个,du!=0,废了.有du==0,废了.度数和大于(还是不等于来着?)2*(n-1),废了.拿到67分……. 接着就是求那个式子了,我有一套O(n)拆一个阶乘的理论.那这个就是O(n^2)了呗. #include<iostream> #include<algorithm> #include<cs…
题目链接 bzoj1211: [HNOI2004]树的计数 题解 prufer序 可重排列计数 代码 #include<bits/stdc++.h> using namespace std; #define int long long int n = 0; int b[10007]; int cnt[10007]; void Div(int x,int k = 1) { for(int j = 2;j * j <= x;++ j) { while(x % j == 0) { cnt[j]…
洛谷P2290 [HNOI2004]树的计数 bzoj1211 [HNOI2004]树的计数 Description 一个有\(n\)个结点的树,设它的结点分别为\(v_1,v_2,\cdots, v_n\),已知第\(i\)个结点\(v_i\)的度数为\(d_i\) 问满足这样的条件的不同的树有多少棵. Input 第一行是一个正整数\(n\),表示树有\(n\)个结点.第二行有\(n\)个数,第\(i\)个数表示\(d_i\),即树的第\(i\)个结点的度数.其中\(1\le n\le 15…
1211: [HNOI2004]树的计数 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1245  Solved: 383[Submit][Status] Description 一个有n个结点的树,设它的结点分别为v1, v2, …, vn,已知第i个结点vi的度数为di,问满足这样的条件的不同的树有多少棵.给定n,d1, d2, …, dn,编程需要输出满足d(vi)=di的树的个数. Input 第一行是一个正整数n,表示树有n个结点.第二…
以前做过几题..好久过去全忘了. 看来是要记一下... [prufer] n个点的无根树(点都是标号的,distinct)对应一个 长度n-2的数列 所以 n个点的无根树有n^(n-2)种 树 转 prufer数列:  每次删除编号最小的叶子节点,将与其相连的那个点 加入 prufer数列  直到树中只剩两个点,就结束 prufer数列 转 树:  首先是有个1到n的集合G,每次将prufer数列当前的第一项 和 当前G中 不在当前prufer里有的 最小的 元素x 连边. 接着删除当前pruf…
1211: [HNOI2004]树的计数 题目:传送门 题解: 今天刚学prufer序列,先打几道简单题 首先我们知道prufer序列和一颗无根树是一一对应的,那么对于任意一个节点,假设这个节点的度数为k,那么在prufer序列里面这个节点就会出现k-1次 (反过来也同理成立) 那么具体的原因这里有解释: 对于任意一个节点在prufer序列里出现一次的话,那么就表示我有一个孩子被删了,那么少了的一次去哪里了呢,因为每次加进去的都是父亲节点,那么少的肯定就是我自己连出去的一条边啊... 知道了这个…
树的计数 bzoj-1211 HNOI-2004 题目大意:题目链接. 注释:略. 想法: prufer序列有一个性质就是一个数在prufer序列中出现的次数等于这个prufer序列生成的树中它的度数-1. 故此我们就是要求$C_{n-2}^{d_1-1}\times C_{n-2-d_1+1}^{d_2-1}\times \cdots \times C_{d_n-1}^{d_n-1}$. 随便搞搞就行了. Code: #include<cstdio> #include<cstring&…
首先是 Martrix67 的博文:http://www.matrix67.com/blog/archives/682 然后是morejarphone同学的博文:http://blog.csdn.net/morejarphone/article/details/50677172 因为是偶然翻了他的这篇博文,然后就秒会了. prufer数列,可以用来解一些关于无根树计数的问题. prufer数列是一种无根树的编码表示,对于一棵n个节点带编号的无根树,对应唯一一串长度为n-1的prufer编码. (…