1 过拟合 过拟合就是训练模型的过程中,模型过度拟合训练数据,而不能很好的泛化到测试数据集上.出现over-fitting的原因是多方面的: 1) 训练数据过少,数据量与数据噪声是成反比的,少量数据导致噪声很大 2 )特征数目过多导致模型过于复杂,如下面的图所示: 看上图中的多项式回归(Polynomial regression),左边为模型复杂度很低,右边的模型复杂度就过高,而中间的模型为比较合适的模型,对于Logistic有同样的情况 2)如何避免过拟合 1) 控制特征的数目,可以通过特征组…
1 过拟合 过拟合就是训练模型的过程中,模型过度拟合训练数据,而不能很好的泛化到测试数据集上.出现over-fitting的原因是多方面的: 1) 训练数据过少,数据量与数据噪声是成反比的,少量数据导致噪声很大 2 )特征数目过多导致模型过于复杂,如下面的图所示: 看上图中的多项式回归(Polynomial regression),左边为模型复杂度很低,右边的模型复杂度就过高,而中间的模型为比较合适的模型,对于Logistic有同样的情况 2)如何避免过拟合 1) 控制特征的数目,可以通过特征组…
觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.4 正则化(regularization) 如果你的神经网络出现了过拟合(训练集与验证集得到的结果方差较大),最先想到的方法就是正则化(regularization).另一个解决高方差的方法就是准备更多的数据,这也是非常可靠的方法. 正则化的原理 正则化公式简析 L1范数:向量各个元素绝对值之和 L2范数:向量各个元素的平方求和然后求平方根 Lp范数:向量各个元素绝对值的p次方求和然后求1/p次方 L∞范数:向量各个元素求绝对值,最大那…
正则化是一种回归的形式,它将系数估计(coefficient estimate)朝零的方向进行约束.调整或缩小.也就是说,正则化可以在学习过程中降低模型复杂度和不稳定程度,从而避免过拟合的危险. 一.数学基础 1. 范数 范数是衡量某个向量空间(或矩阵)中的每个向量以长度或大小.范数的一般化定义:对实数p>=1, 范数定义如下:   L1范数 当p=1时,是L1范数,其表示某个向量中所有元素绝对值的和. L2范数 当p=2时,是L2范数, 表示某个向量中所有元素平方和再开根, 也就是欧几里得距离…
正则化(Regularization - Solving the Problem of Overfitting) 欠拟合(高偏差) VS 过度拟合(高方差) Underfitting, or high bias, is when the form of our hypothesis function h maps poorly to the trend of the data. It is usually caused by a function that is too simple or us…
最优化方法:L1和L2正则化regularization http://blog.csdn.net/pipisorry/article/details/52108040 机器学习和深度学习常用的规则化方法之一:L范数正则化(规格化). 一般来说,监督学习可以看做最小化下面的目标函数): 规则项Ω(w) loss项可参考[机器学习算法及其损失函数].Note:似然函数(likelihood function)的负对数被叫做误差函数(error function). 这里我们先把目光转向“规则项Ω(…
7.1 过拟合的问题 到现在为止,我们已经学习了几种不同的学习算法,包括线性回归和逻辑回归,它们能够有效地解决许多问题,但是当将它们应用到某些特定的机器学习应用时,会遇到过拟合(over-fitting)的问题,可能会导致它们效果很差. 在这段视频中,我将为你解释什么是过度拟合问题,并且在此之后接下来的几个视频中,我们将谈论一种称为正则化(regularization)的技术,它可以改善或者减少过度拟合问题. 如果我们有非常多的特征,我们通过学习得到的假设可能能够非常好地适应训练集(代价函数可能…
如果你怀疑神经网络过度拟合的数据,即存在高方差的问题,那么最先想到的方法可能是正则化,另一个解决高方差的方法就是准备更多数据,但是你可能无法时时准备足够多的训练数据,或者获取更多数据的代价很高.但正则化通常有助于避免过拟合或者减少网络误差,下面介绍正则化的作用原理. 我们用逻辑回归来实现这些设想. 逻辑回归的损失函数为 然后求损失函数J的最小值 其中,分别表示预测值与真实值,w,b是逻辑回归的两个参数,. 在逻辑回归中加入正则化,只需要添加参数λ,也就是正则化参数,式子如下: 其中,向量参数w的…
1. 过拟合是什么? https://www.zhihu.com/question/264909622    那个英文回答就是说h1.h2属于同一个集合,实际情况是h2比h1错误率低,你用h1来训练,用h2来测试,但h1的准确率比h2却高 个人理解:网络过分学习了训练集的特征,把不是这个训练集本质的特征也学习进去了,导致模型不能在测试集正确识别(记得统计学习方法里面有一个配图,一条曲线过分学习特征).或者说,训练集的准确率很高,但测试集的准确率很低.在training data上的error渐渐…
''' 思路:1.调用数据集 2.定义用来实现神经元功能的函数(包括解决过拟合) 3.定义输入和输出的数据4.定义隐藏层(函数)和输出层(函数) 5.分析误差和优化数据(改变权重)6.执行神经网络 '''import tensorflow as tffrom sklearn.datasets import load_digitsfrom sklearn.model_selection import train_test_splitfrom sklearn.preprocessing import…