一:使用sparksql开发 1.sparksql开发的两种方式 HQL:SQL语句开发 eq : sqlContext.sql("xxxx") DSL : sparkSql中DataFrame的API调用方式 eq:val df=sqlContext.xxx df.select("number") 二:HQL的开发案例 1.新建目录上传日志 2.开启服务 三:书写程序 1.描述 这个程序一共包括两个部分. 所以写的是两个程序. 2.程序一:对日志的描述--Apac…
RDD, Resilient Distributed Dataset,弹性分布式数据集, 是Spark的核心概念. 对于RDD的原理性的知识,可以参阅Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing 和 An Architecture for Fast and General Data Processing on Large Clusters 这两篇论文. 这篇…
原文链接:spark读取 kafka nginx网站日志消息 并写入HDFS中 spark 版本为1.0 kafka 版本为0.8 首先来看看kafka的架构图 详细了解请参考官方 我这边有三台机器用于kafka 日志收集的 A 192.168.1.1 为server B 192.168.1.2 为producer C 192.168.1.3 为consumer 首先在A上的kafka安装目录下执行如下命令 ./kafka-server-start.sh ../config/server.pro…
这个大坑... .... 如题,在Windows的eclipse中编写SparkSQL代码时,编写如下代码时,一运行就抛出一堆空指针异常: // 首先还是创建SparkConf SparkConf conf = new SparkConf() .setMaster("local") .setAppName("HiveDataSource"); // 创建JavaSparkContext JavaSparkContext sc = new JavaSparkConte…
1. Spark中的基本概念 Application:基于Spark的用户程序,包含了一个driver program和集群中多个executor. Driver Program:运行Application的main()函数并创建SparkContext.通常SparkContext代表driver program. Executor:为某Application运行在worker node上的一个进程.该进程负责运行Task,并负责将数据存在内存或者磁盘 上.每个Application都有自己独…
版权声明:本文为原创文章,未经允许不得转载. 复习内容: Spark中Stage的提交 http://www.cnblogs.com/yourarebest/p/5356769.html Spark中Task的提交 1.在复习内容部分我们介绍了在方法onStageSubmitted中,Stage的提交,那么在该方法中还有Task的提交,如下所示: override def onStageSubmitted(stageSubmitted: SparkListenerStageSubmitted):…
1.PairRDD介绍     Spark为包含键值对类型的RDD提供了一些专有的操作.这些RDD被称为PairRDD.PairRDD提供了并行操作各个键或跨节点重新进行数据分组的操作接口.例如,PairRDD提供了reduceByKey()方法,可以分别规约每个键对应的数据,还有join()方法,可以把两个RDD中键相同的元素组合在一起,合并为一个RDD. 2.创建Pair RDD     程序示例:对一个英语单词组成的文本行,提取其中的第一个单词作为key,将整个句子作为value,建立 P…
1.PairRDD介绍     Spark为包含键值对类型的RDD提供了一些专有的操作.这些RDD被称为PairRDD.PairRDD提供了并行操作各个键或跨节点重新进行数据分组的操作接口.例如,PairRDD提供了reduceByKey()方法,可以分别规约每个键对应的数据,还有join()方法,可以把两个RDD中键相同的元素组合在一起,合并为一个RDD. 2.创建Pair RDD     程序示例:对一个英语单词组成的文本行,提取其中的第一个单词作为key,将整个句子作为value,建立 P…
当两个表需要join时,如果一个是大表,一个是小表,正常的map-reduce流程需要shuffle,这会导致大表数据在节点间网络传输,常见的优化方式是将小表读到内存中并广播到大表处理,避免shuffle+reduce: 在hive中叫mapjoin(map-side join),配置为 hive.auto.convert.join 在spark中叫BroadcastHashJoin (broadcast hash join) Spark SQL uses broadcast join (aka…
https://mp.weixin.qq.com/s/KPTM02-ICt72_7ZdRZIHBA 苏宁基于Spark Streaming的实时日志分析系统实践 原创: AI+落地实践 AI前线 2018-03-07 前言 目前业界基于 Hadoop 技术栈的底层计算平台越发稳定成熟,计算能力不再成为主要瓶颈. 多样化的数据.复杂的业务分析需求.系统稳定性.数据可靠性, 这些软性要求, 逐渐成为日志分析系统面对的主要问题.2018 年线上线下融合已成大势,苏宁易购提出并践行双线融合模式,提出了智…
Spark中的IsNotNull函数怎么用 在这里看到的这个函数,就是判断是否为空,但是开始不知道怎么用,后来找到了,要在View中用,也就是SparkSQL中.如下: spark.sql("select * from abc where IsNotNull(colunm_name) limit x") PS:开始谷歌了半天没找到,结果百度了一番找到了答案-…
一. 数据倾斜的现象 多数task执行速度较快,少数task执行时间非常长,或者等待很长时间后提示你内存不足,执行失败. 二. 数据倾斜的原因 常见于各种shuffle操作,例如reduceByKey,groupByKey,join等操作. 数据问题 key本身分布不均匀(包括大量的key为空) key的设置不合理 spark使用问题 shuffle时的并发度不够 计算方式有误 三. 数据倾斜的后果 spark中一个stage的执行时间受限于最后那个执行完的task,因此运行缓慢的任务会拖累整个…
一.第一部分 1.spark2.1与hadoop2.7.3集成,spark on yarn模式下,需要对hadoop的配置文件yarn-site.xml增加内容,如下: <property> <name>yarn.log-aggregation-enable</name> <value>true</value> </property> <property> <name>yarn.log.server.url&l…
在spark-streming 中调用spark-sql时过程遇到的问题 使用版本:spark-2.1.0 JDK1.8 1. spark-sql中对limit 的查询结果使用sum() 聚合操作不生效 如下sql会报出 top10_sts 存在异常. SELECT SUM(mtime_show_times) AS top10_sts FROM tb_movie_bo_pt_params ORDER BY mtime_persion_times DESC LIMIT 10 改成如下sql逻辑正常…
原文链接:Spark应用程序运行的日志存在哪里 在很多情况下,我们需要查看driver和executors在运行Spark应用程序时候产生的日志,这些日志对于我们调试和查找问题是很重要的. Spark日志确切的存放路径和部署模式相关: (1).如果是Spark Standalone模式,我们可以直接在Master UI界面查看应用程序的日志,在默认情况下这些日志是存储在worker节点的work目录下,这个目录可以通过SPARK_WORKER_DIR参数进行配置. (2).如果是Mesos模式,…
摘要:         Tachyon是一种分布式文件系统,能够借助集群计算框架使得数据以内存的速度进行共享.当今的缓存技术优化了read过程,可是,write过程由于须要容错机制,就须要通过网络或者是磁盘进行复制操作.Tachyon通过将"血统"技术引入到存储层进而消除了这个瓶颈.创建一个长期的以"血统机制"为基础的存储系统的关键挑战是失败情况发生的时候及时地进行数据恢复.Tachyon通过引入一种检查点的算法来解决问题,这样的方法保证了恢复过程的有限开销以及通过…
1 背景 在测试spark计算时,将作业提交到yarn(模式–master yarn-cluster)上,想查看print到控制台这是很难的,因为作业是提交到yarn的集群上,所以,去yarn集群上看日志是很麻烦的,但是又需要看print的信息,方便调试或者别的目的. Spark日志确切的存放路径和部署模式相关,如果是YARN模式,最简单地收集日志的方式是使用YARN的日志收集工具(yarn logs -applicationId ),这个工具可以收集你应用程序相关的运行日志,但是这个工具是有限…
由于本人文字表达能力不足,还是多多以代码形式表述,首先展示测试代码,然后解释: package com.txq.spark.test import org.apache.spark.graphx.util.GraphGeneratorsimport org.apache.spark.graphx._import org.apache.spark.rdd.RDDimport org.apache.spark.{SparkConf, SparkContext, SparkException, gra…
0.介绍: (1)Spark SQL的前身是Shark,即Hive on Spark, 1.SparkSQL特点: (1)支持多种数据源:Hive,RDD,Parquet,JSON,JDBC等. (2)多种性能优化技术:in-memory columnar storage,byte-code generation,cost model动态评估等 (3)组件扩展:对于SQL的语法解析器.分析器以及优化器,用户都可以自己重新开发,并且动态扩展.SparkSQL的性能对比Shark来说,又有了数倍的提…
数据抽象 sparkSQL 的数据抽象是 DataFrame,df 相当于表格,它的每一行是一条信息,形成了一个 Row Row 它是 sparkSQL 的一个抽象,用于表示一行数据,从表现形式上看,相当于一个 tuple 或者 表中的一行: from pyspark.sql import Row ##### 创建 Row #### method 1 row = Row(name="Alice", age=11) print row # Row(age=11, name='Alice'…
什么是DataFrame 在Spark中,DataFrame是一种以RDD为基础的分布式数据集,类似于传统数据库中的二维表格. RDD和DataFrame的区别 DataFrame与RDD的主要区别在于,DataFrame带有schema元信息,即DataFrame所表示的二维表数据集的每一列都带有名称和类型.使得Spark SQL得以洞察更多的结构信息,从而对藏于DataFrame背后的数据源以及作用于DataFrame之上的变换进行了针对性的优化,最终达到大幅提升运行时效率的目标. RDD,…
0. 零碎概念 (1) 这个有点疑惑,有可能是错误的. (2) 此处就算地址写错了也不会报错,因为此操作只是读取数据的操作(元数据),表示从此地址读取数据但并没有进行读取数据的操作 (3)分区(有时间看HaDoopRDD这个方法的源码,用来计算分区数量的) 物理切片:实际将数据切分开,即以前的将数据分块(每个数据块的存储地址不一样),hdfs中每个分块的大小为128m 逻辑切片:指的是读取数据的时候,将一个数据逻辑上分成多块(这个数据在地址上并没有分开),即以偏移量的形式划分(各个Task从某个…
目录 通过scala语言基于local编写spark的Wordcount 基于yarn去调度WordCount 通过scala语言基于local编写spark的Wordcount import org.apache.spark.rdd.RDD import org.apache.spark.{SparkConf, SparkContext} object WordCount { def main(args: Array[String]): Unit = { // Spark配置文件对象 val…
<深入理解Spark:核心思想与源码分析>一书前言的内容请看链接<深入理解SPARK:核心思想与源码分析>一书正式出版上市 <深入理解Spark:核心思想与源码分析>一书第一章的内容请看链接<第1章 环境准备> <深入理解Spark:核心思想与源码分析>一书第二章的内容请看链接<第2章 SPARK设计理念与基本架构> <深入理解Spark:核心思想与源码分析>一书第三章第一部分的内容请看链接<深入理解Spark:核心…
spark中,不论spark-shell还是spark-submit,都可以设置memory大小,但是有的同学会发现有两个memory可以设置.分别是driver memory 和executor memory. 从名字上大概可以猜出大概.具体就是说driver memory并不是master分配了多少内存,而是管理多少内存.换言之就是为当前应用分配了多少内存. executor memory是每个节点上占用的内存.每一个节点可使用内存. 单独设置其中一个,集群仍能正常启动. 实际应用中,初步感…
iOS 中捕获程序崩溃日志 (2014-04-22 17:35:59) 转载▼     iOS开发中遇到程序崩溃是很正常的事情,如何在程序崩溃时捕获到异常信息并通知开发者,是大多数软件都选择的方法.下面就介绍如何在iOS中实现: 1. 在程序启动时加上一个异常捕获监听,用来处理程序崩溃时的回调动作  NSSetUncaughtExceptionHandler (&UncaughtExceptionHandler);  官方文档介绍:Sets the top-level error-handlin…
王家林亲授<DT大数据梦工厂>大数据实战视频 Scala 深入浅出实战经典(1-87讲)完整视频.PPT.代码下载:百度云盘:http://pan.baidu.com/s/1c0noOt6 腾讯微云:http://url.cn/TnGbdC 360云盘:http://yunpan.cn/cQ4c2UALDjSKy 访问密码 45e2土豆:http://www.tudou.com/programs/view/NGgUD5FBQaA/优酷:http://v.youku.com/v_show/id_…
王家林亲授<DT大数据梦工厂>大数据实战视频 Scala 深入浅出实战经典(1-87讲)完整视频.PPT.代码下载: 百度云盘:http://pan.baidu.com/s/1c0noOt6 腾讯微云:http://url.cn/TnGbdC 360云盘:http://yunpan.cn/cQ4c2UALDjSKy 访问密码 45e2土豆:http://www.tudou.com/programs/view/N9y_okxSJzQ/优酷:http://v.youku.com/v_show/id…
王家林亲授<DT大数据梦工厂>大数据实战视频 Scala 深入浅出实战经典(1-87讲)完整视频.PPT.代码下载:百度云盘:http://pan.baidu.com/s/1c0noOt6 腾讯微云:http://url.cn/TnGbdC 360云盘:http://yunpan.cn/cQ4c2UALDjSKy 访问密码 45e2土豆:http://www.tudou.com/programs/view/IVN4EuFlmKk/优酷:http://v.youku.com/v_show/id_…
王家林亲授<DT大数据梦工厂>大数据实战视频 Scala 深入浅出实战经典(1-64讲)完整视频.PPT.代码下载:百度云盘:http://pan.baidu.com/s/1c0noOt6 腾讯微云:http://url.cn/TnGbdC 360云盘:http://yunpan.cn/cQ4c2UALDjSKy 访问密码 45e2土豆:http://www.tudou.com/programs/view/5uuKOP38d6s/优酷:http://v.youku.com/v_show/id_…