L2-017. 人以群分】的更多相关文章

入侵(暴风雨前的宁静) 下午阳光甚好,想趁着安静的周末静下心来写写代码.刚过一个小时,3点左右,客服MM找我,告知客户都在说平台登录不了(我们有专门的客户qq群).看了下数据库连接数,正常.登录阿里云发现cpu 居高不下.客户还在等着,只好先重启tomcat.重启后平台登陆正常.本以为是用户导数据或者连接池被占用光了(这个以前出现过,也比较坑),重启下就会没事. 15分钟左右,客服MM又找我,说平台打开很慢. 我打开登录页面加载都很慢,这时候还是不知道什么问题,上阿里云看看,一看发现有攻击. 看…
前面我们学习了L2 Population 的原理,今天讨论如何在 Neutron 中配置和启用此特性. 目前 L2 Population 支持 VXLAN with Linux bridge 和 VXLAN/GRE with OVS. 可以通过以下配置启用 L2 Population. 在 /etc/neutron/plugins/ml2/ml2_conf.ini 设置 l2population mechanism driver. mechanism_drivers = linuxbridge,…
前面我们学习了 VXLAN,今天讨论跟 VXLAN 紧密相关的 L2 Population. L2 Population 是用来提高 VXLAN 网络 Scalability 的. 通常我们说某个系统的 Scalability 好,其意思是: 当系统的规模变大时,仍然能够高效地工作. L2 Population 到底解决了怎样的 Scalability 问题? 请看下图: 这是一个包含 5 个节点的 VXLAN 网络,每个节点上运行了若干 VM. 现在假设 Host 1 上的 VM A 想与 H…
学习 Neutron 系列文章: (1)Neutron 所实现的虚拟化网络 (2)Neutron OpenvSwitch + VLAN 虚拟网络 (3)Neutron OpenvSwitch + GRE/VxLAN 虚拟网络 (4)Neutron OVS OpenFlow 流表 和 L2 Population (5)Neutron DHCP Agent (6)Neutron L3 Agent (7)Neutron LBaas (8)Neutron Security Group (9)Neutro…
机器学习中的范数规则化之(一)L0.L1与L2范数 zouxy09@qq.com http://blog.csdn.net/zouxy09 今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化.我们先简单的来理解下常用的L0.L1.L2和核范数规则化.最后聊下规则化项参数的选择问题.这里因为篇幅比较庞大,为了不吓到大家,我将这个五个部分分成两篇博文.知识有限,以下都是我一些浅显的看法,如果理解存在错误,希望大家不吝指正.谢谢. 监督机器学习问题无非就是"minimizeyour error…
<zw版·Halcon-delphi系列原创教程> Halcon分类函数017·point点函数 为方便阅读,在不影响说明的前提下,笔者对函数进行了简化: :: 用符号“**”,替换:“procedure” :: 用大写字母“X”,替换:“IHUntypedObjectX” :: 省略了字符:“const”.“OleVariant” [示例] 说明 函数: procedure AddNoiseWhiteContourXld( const Contours: IHUntypedObjectX;…
正则化方法:防止过拟合,提高泛化能力 在训练数据不够多时,或者overtraining时,常常会导致overfitting(过拟合).其直观的表现如下图所示,随着训练过程的进行,模型复杂度增加,在training data上的error渐渐减小,但是在验证集上的error却反而渐渐增大——因为训练出来的网络过拟合了训练集,对训练集外的数据却不work. 为了防止overfitting,可以用的方法有很多,下文就将以此展开.有一个概念需要先说明,在机器学习算法中,我们常常将原始数据集分为三部分:t…
L1正则会产生稀疏解,让很多无用的特征的系数变为0,只留下一些有用的特征 L2正则不让某些特征的系数变为0,即不产生稀疏解,只让他们接近于0.即L2正则倾向于让权重w变小.见第二篇的推导. 所以,样本量比较少,但是特征特别多的时候,可以用L1正则,把一部分不显著的特征系数变成0: 而样本量多,特征偏少的时候,可以使用L2正则,保留住所有的特征,只是让系数变小,接近于0. 机器学习中的范数规则化之(一)L0.L1与L2范数 :http://blog.csdn.net/zouxy09/article…
Why do we need it, whatever it is? VM unicast, multicast and broadcast traffic flow is detailed in my previous post: Tunnels in Openstack Neutron TL;DR: Agent OVS flow tables implement learning. That is, any unknown unicast destination (IE: MAC addre…
http://blog.csdn.net/zouxy09/article/details/24971995 机器学习中的范数规则化之(一)L0.L1与L2范数 zouxy09@qq.com http://blog.csdn.net/zouxy09 今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化.我们先简单的来理解下常用的L0.L1.L2和核范数规则化.最后聊下规则化项参数的选择问题.这里因为篇幅比较庞大,为了不吓到大家,我将这个五个部分分成两篇博文.知识有限,以下都是我一些浅显的看法…