kaggle& titanic代码】的更多相关文章

这两天报名参加了阿里天池的’公交线路客流预测‘赛,就顺便先把以前看的kaggle的titanic的训练赛代码在熟悉下数据的一些处理.题目根据titanic乘客的信息来预测乘客的生还情况.给了titanic_test.csv和titanic_train.csv两数据表.首先是表的一些字段说明: PassengerId -- A numerical id assigned to each passenger. Survived -- Whether the passenger survived (1…
Titanic是kaggle上一个练手的比赛,kaggle平台提供一部分人的特征,以及是否遇难,目的是预测另一部分人是否遇难.目前抽工作之余,断断续续弄了点,成绩为0.79426.在这个比赛过程中,接触并了解了一些数据挖掘比赛的基本流程,现记录一下. 1. 分析数据 因为数据量比较小,train有800多条数据,test有400多条数据,因此这里用了execl的数据透视表分析. 同时python提供pandas库,可以很好的分析数据. 2. 缺失值填充 关于Age,Fare,Embarked三个…
一直想着抓取股票的变化,偶然的机会在看股票数据抓取的博客看到了kaggle,然后看了看里面的题,感觉挺新颖的,就试了试. 题目如图:给了一个train.csv,现在预测test.csv里面的Passager是否幸存.train.csv里面包含的乘客信息有 PassagerId 乘客id Survived 乘客是否幸存 Pclass 仓位 Name 乘客姓名 Sex 乘客性别 Age 乘客年龄 SibSp 船上是否有兄弟姐妹 Parch 穿上是否有父母子女 Ticket 船票信息 Fare 票价…
1.关于年龄Age 除了利用平均数来填充,还可以利用正态分布得到一些随机数来填充,首先得到已知年龄的平均数mean和方差std,然后生成[ mean-std,  mean+std ]之间的随机数,然后利用这些随机值填充缺失的年龄. 2.关于票价Fare 预处理:训练集不缺,测试集缺失1个,用最高频率值填充 Fare_freq = test.Fare.dropna().mode()[0] # 找出非缺失值中的所有最高频值,取第一个 for dataset in train_test_data: d…
其实就是把train.csv拿出来看了看,找了找规律,调了调参数而已. 找到如下规律: 1.男的容易死,女的容易活 2.一等舱活,三等舱死 3.老人死,小孩活 4.兄弟姐妹多者死 5.票价高的活 6.有Cabin记录的活 然后规则跑一跑,调一调参数,就把今天的提交次数用满了,然后跑到0.77了 import pandas import numpy import csv csv_reader = csv.reader(open('test.csv',encoding='utf-8')) write…
# coding: utf-8 # In[19]: # 0.78468 # In[20]: import numpy as np import pandas as pd import warnings warnings.filterwarnings('ignore') from sklearn import preprocessing # In[21]: train_path = r'C:\Users\cbattle\Desktop\train.csv' # r'/home/adminn/桌面/…
正文:14pt 代码:15px 1 初探数据 先看看我们的数据,长什么样吧.在Data下我们train.csv和test.csv两个文件,分别存着官方给的训练和测试数据. import pandas as pd #数据分析 import numpy as np #科学计算 from pandas import Series,DataFrame data_train = pd.read_csv("/Users/Hanxiaoyang/Titanic_data/Train.csv") da…
 下面一文章就总结几点关键: 1.要学会观察,尤其是输入数据的特征提取时,看各输入数据和输出的关系,用绘图看! 2.训练后,看测试数据和训练数据误差,确定是否过拟合还是欠拟合: 3.欠拟合的话,说明模型不准确或者特征提取不够,对于特征提取不够问题,可以根据模型的反馈来看其和数据的相关性,如果相关系数是0,则放弃特征,如果过低,说明特征需要再次提炼! 4.用集成学习,bagging等通常可以获得更高的准确度! 5.缺失数据可以使用决策树回归进行预测! 转自:http://blog.csdn.net…
入门kaggle,开始机器学习应用之旅. 参看一些入门的博客,感觉pandas,sklearn需要熟练掌握,同时也学到了一些很有用的tricks,包括数据分析和机器学习的知识点.下面记录一些有趣的数据分析方法和一个自己撸的小程序. 1.Tricks 1) df.info():数据的特征属性,包括数据缺失情况和数据类型. df.describe(): 数据中各个特征的数目,缺失值为NaN,以及数值型数据的一些分布情况,而类目型数据看不到. 缺失数据处理:缺失的样本占总数比例极高,则直接舍弃:缺失样…
kaggle House_Price_final 代码 import numpy as np import pandas as pd from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import mean_absolute_error from sklearn.model_selection import train_test_split from sklearn.preprocessing impo…