本文首发于 Nebula Graph Community 公众号 当游戏上知识图谱,网易游戏是如何应对大规模图数据的管理问题,Nebula Graph 又是如何帮助网易游戏落地游戏内复杂的图的业务呢?在本文,我们来一探究竟. 游戏中的图数据 目前网易游戏大部分的产品都是在线游戏,作为国际领先的头部游戏厂商,网易所吸引的在线玩家数量也是众多的,那么大量的玩家登录我们的游戏势必产生大量各种操作性数据. 如上图中间显示的交易数据--玩家可以购买商城里的物品,或者直接购买其他玩家的物品:社交数据--加好…
本文为微众银行大数据平台:周可在 nMeetup 深圳场的演讲这里文字稿,演讲视频参见:B站 自我介绍下,我是微众银行大数据平台的工程师:周可,今天给大家分享一下 Nebula Graph 在微众银行 WeDataSphere 的实践情况. 先来说下图数据库应用背景. WeDataSphere 图数据库架构是基于 JanusGraph 搭建,正如邸帅在演讲<NebulaGraph - WeDataSphere 开源介绍>中提及的那样,主要用于解决微众银行数据治理中的数据血缘问题.在使用 Jan…
前言 本文由 Nebula Graph 实习生@王杰贡献. 最近 @Yener 开源了史上最大规模的中文知识图谱--OwnThink(链接:https://github.com/ownthink/KnowledgeGraphData ),数据量为 1.4 亿条. 本文介绍如何将这份数据快速导入图数据库 Nebula Graph,全过程大约需要 30 分钟. 中文知识图谱 OwnThink 简介 思知(OwnThink) 知识图谱是由 Google 在 2012 年提出来的一个概念.主要是用来描述…
本文由 Nebula Graph 实习生@王杰贡献. 最近 @Yener 开源了史上最大规模的中文知识图谱——OwnThink(链接:https://github.com/ownthink/KnowledgeGraphData),数据量为 1.4 亿条. 本文介绍如何将这份数据快速导入图数据库 Nebula Graph,全过程大约需要 30 分钟. 中文知识图谱 OwnThink 简介 思知(OwnThink) 知识图谱是由 Google 在 2012 年提出来的一个概念.主要是用来描述真实世界…
前言 随着系统的运行,数据量变得越来越大,单纯的将数据存储在mysql中,已然不能满足查询要求了,此时我们引入Redis作为查询的缓存层,将业务中的热数据保存到Redis,扩展传统关系型数据库的服务能力,用户通过应用直接从Redis中快速获取常用数据,或者在交互式应用中使用Redis保存活跃用户的会话,都可以极大地降低后端关系型数据库的负载,提升用户体验. 传统命令的缺点 使用传统的redis client命令在大数据量的导入场景下存在如下缺陷: 由于redis是单线程模型,虽然避免了多线程下线…
本文首发于 Nebula Graph Community 公众号 背景 企查查是企查查科技有限公司旗下的一款企业信用查询工具,旨在为用户提供快速查询企业工商信息.法院判决信息.关联企业信息.法律诉讼.失信信息.被执行人信息.知识产权信息.公司新闻.企业年报等服务. 为更好地展现企业之间的法律诉讼.风险信息.股权信息.董监高法等信息,我们抽取结构化/非结构化的企业数据构建企业知识图谱,为用户提供真实可靠的服务. 图数据库选择 在最初的时候,我们用的是 Neo4j HA cluster 作为存储端.…
本文首发于 Nebula Graph Community 公众号 index not found?找不到索引?为什么我要创建 Nebula Graph 索引?什么时候要用到 Nebula Graph 原生索引?针对社区常见问题,本文旨在一文带大家搞清索引使用问题. Nebula Graph 的索引其实和传统的关系型数据库中的索引很像,但是又有一些容易让人疑惑的区别.刚开始了解 Nebula 的同学会疑惑: 不清楚 Nebula Graph 图数据库中的索引到的是什么概念: 什么时候应该使用 Ne…
本文首发于 Nebula Graph Community 公众号 ​在图论中,介数(Betweenness)反应节点在整个网络中的作用和影响力.而本文主要介绍如何基于 Nebula Graph 图数据库实现 Betweenness Centrality 介数中心性的计算. 1. 算法介绍 中心性是用来衡量一个节点在整个网络图中所在中心程度的概念,包括度中心性.接近中心性.中介中心性等. 其中度中心性通过节点的度数(即关联的边数)来刻画节点的受欢迎程度,接近中心性是通过计算每个节点到全图其他所有节…
企业数据越存越多,存储容量与查询性能.以及存储成本之间的矛盾对于技术团队来说是个普遍难题.这个难题在 Elasticsearch 与 ClickHouse 这两个场景中尤为突出,为了应对不同热度数据对查询性能的要求,这两个组件在架构设计上就有一些将数据进行分层的策略. 同时,在存储介质方面,随着云计算的发展,对象存储以低廉的价格和弹性伸缩的空间获得了企业的青睐.越来越多的企业将温.冷数据迁移至对象存储.但如果将索引.分析组件直接对接至对象存储时会发生查询性能.兼容性等问题. 这篇文章将为大家介绍…
本文系腾讯云安全团队李航宇.邓昶博撰写 图数据库在挖掘黑灰团伙以及建立安全知识图谱等安全领域有着天然的优势.为了能更好的服务业务,选择一款高效并且贴合业务发展的图数据库就变得尤为关键.本文挑选了几款业界较为流行的开源图数据库与 Nebula Graph 进行了多角度的对比. 图数据库介绍 Neo4j Neo4j 是目前业界广泛使用的图数据库,包含社区版本和商用版本,本文中使用社区版本. HugeGraph HugeGraph 是百度基于 JanusGraph 改进而来的分布式图数据库,主要应用场…