Day2-T3】的更多相关文章

Problem Description \(Sylvia\) 是一个热爱学习的女孩子. 前段时间,\(Sylvia\) 参加了学校的军训.众所周知,军训的时候需要站方阵. \(Sylvia\) 所在的方阵中有\(n*m\)名学生,方阵的行数为 \(n\),列数为 \(m\). 为了便于管理,教官在训练开始时,按照从前到后,从左到右的顺序给方阵中 的学生从 \(1\) 到 \(n*m\) 编上了号码(参见后面的样例).即:初始时,第 \(i\) 行第 \(j\) 列 的学生的编号是\((i-1)*…
比较明显的斜率优化DP,省选时因为时间太紧张和斜率DP写得不熟等原因只写了60分的暴力DP,其实当时完全可以对拍来检验标算的正确,但是我当时too naive- 很快打完了,调了将近一晚上QAQ,因为脑残地把两个变量名打反了.错在这上面却只有一组WA,所以总是在想一些奇葩的错误(数组越界什么的,int没有强转long long←几天前做数论和FFT留下的后遗症),没有先认真地静态查错.以后一定要认真仔细,杜绝手残的行为!比赛时绝不会有这么长的调试时间,手残一次就会滚粗了QuQ #include<…
题目描述 [问题描述] 小 B 最近迷上了华容道,可是他总是要花很长的时间才能完成一次.于是,他想到用编程来完成华容道:给定一种局面, 华容道是否根本就无法完成,如果能完成, 最少需要多少时间. 小 B 玩的华容道与经典的华容道游戏略有不同,游戏规则是这样的: 在一个 n*m 棋盘上有 n*m 个格子,其中有且只有一个格子是空白的,其余 n*m-1个格子上每个格子上有一个棋子,每个棋子的大小都是 1*1 的: 有些棋子是固定的,有些棋子则是可以移动的: 任何与空白的格子相邻(有公共的边)的格子上…
题目背景 公元 2044 年,人类进入了宇宙纪元. 题目描述 L 国有 n 个星球,还有 n-1 条双向航道,每条航道建立在两个星球之间,这 n-1 条航道连通了 L 国的所有星球. 小 P 掌管一家物流公司,该公司有很多个运输计划,每个运输计划形如:有一艘物 流飞船需要从 ui 号星球沿最快的宇航路径飞行到 vi 号星球去.显然,飞船驶过一条航道 是需要时间的,对于航道 j,任意飞船驶过它所花费的时间为 tj,并且任意两艘飞船之 间不会产生任何干扰. 为了鼓励科技创新,L 国国王同意小 P 的…
问题描述: 林记在做数学习题的时候,经常遇到这种情况:苦思冥想了很久终于把问题解出来,结果发现答案是0,久而久之林记在得到习题答案是0的时候就没有了做出一道难题的成就感.于是林记决定:以后出题,答案一定不能是0,例如求n!最低位非零数这样的习题就很不错了. 现在林记提出了一个更难一点的问题:求n!在K进制下的最低位非零数.其中K符合一些特殊的条件:K是由若干个互不相同的质数相乘得出来的,例如K=2,3,5,6,7,10…… 输入格式: 首先输入的第一行是一个整数Q,表示询问的个数. 接下来是Q个…
题目描述 L 国有 n 个星球,还有 n-1 条双向航道,每条航道建立在两个星球之间,这 n-1 条航道连通了 L 国的所有星球. 小 P 掌管一家物流公司,该公司有很多个运输计划,每个运输计划形如:有一艘物 流飞船需要从 ui 号星球沿最快的宇航路径飞行到 vi 号星球去.显然,飞船驶过一条航道 是需要时间的,对于航道 j,任意飞船驶过它所花费的时间为 tj,并且任意两艘飞船之 间不会产生任何干扰. 为了鼓励科技创新,L 国国王同意小 P 的物流公司参与 L 国的航道建设,即允许小 P 把某一…
这篇不多说,具体的解释都在程序里 题目描述 [问题描述] 小 B 最近迷上了华容道,可是他总是要花很长的时间才能完成一次.于是,他想到用编程来完成华容道:给定一种局面, 华容道是否根本就无法完成,如果能完成, 最少需要多少时间. 小 B 玩的华容道与经典的华容道游戏略有不同,游戏规则是这样的: 在一个 n*m 棋盘上有 n*m 个格子,其中有且只有一个格子是空白的,其余 n*m-1个格子上每个格子上有一个棋子,每个棋子的大小都是 1*1 的: 有些棋子是固定的,有些棋子则是可以移动的: 任何与空…
Problem Background 公元 \(2044\) 年,人类进入了宇宙纪元. Description 公元\(2044\) 年,人类进入了宇宙纪元. $L $国有 \(n\) 个星球,还有 \(n-1\) 条双向航道,每条航道建立在两个星球之间,这 \(n-1\) 条航道连通了 \(L\) 国的所有星球. 小 \(P\) 掌管一家物流公司, 该公司有很多个运输计划,每个运输计划形如:有一艘物流飞船需要从 \(u_i\) 号星球沿最快的宇航路径飞行到 \(v_i\) 号星球去.显然,飞船…
Problem Description \(Kiana\) 最近沉迷于一款神奇的游戏无法自拔. 简单来说,这款游戏是在一个平面上进行的. 有一架弹弓位于 \((0,0)\) 处,每次 \(Kiana\) 可以用它向第一象限发射一只红色的小鸟,小鸟们的飞行轨迹均为形如 \(y=ax^2+bx\) 的曲线,其中 \(a,b\) 是\(Kiana\)指定的参数,且必须满足 \(a < 0,a,b\) 都是实数. 当小鸟落回地面(即 \(x\) 轴)时,它就会瞬间消失. 在游戏的某个关卡里,平面的第一象…
Problem Description Z 国有\(n\)座城市,\(n - 1\)条双向道路,每条双向道路连接两座城市,且任意两座城市 都能通过若干条道路相互到达. Z 国的国防部长小 Z 要在城市中驻扎军队.驻扎军队需要满足如下几个条件: 一座城市可以驻扎一支军队,也可以不驻扎军队. 由道路直接连接的两座城市中至少要有一座城市驻扎军队. 在城市里驻扎军队会产生花费,在编号为\(i\)的城市中驻扎军队的花费是\(p_i\). 小 Z 很快就规划出了一种驻扎军队的方案,使总花费最小.但是国王又给…