numpy的基础计算2】的更多相关文章

import numpy as np A = np.arange(14,2,-1).reshape((3,4)) #平均值 print(np.mean(A)) print(A.mean()) print(np.average(A)) #中位数 print(np.median(A)) #累加 print(np.cumsum(A)) #最大值和最小值 print(np.argmin(A)) print(np.argmax(A)) #累差 print(np.diff(A)) #非零 print(np.…
一.MumPy:数组计算 1.NumPy是高性能科学计算和数据分析的基础包.它是pandas等其他各种工具的基础.2.NumPy的主要功能: ndarray,一个多维数组结构,高效且节省空间 无需循环对整组数据进行快速运算的数学函数 *读写磁盘数据的工具以及用于操作内存映射文件的工具 *线性代数.随机数生成和傅里叶变换功能 *用于集成C.C++等代码的工具 3.安装方法:pip install numpy4.引用方式:import numpy as np 二.NumPy:ndarray-多维数组…
numpy.array基础 使用numpy.__version__可以检查numpy的版本 当然也可以直接使用命令行检查numpy版本 也可以用来简化引用,使用as python list特点 numpy是可以不限定类型的 array是限定类型的,降低了灵活性,但是效率更高,但是还有一个缺点,array只是将数据当做一个二维数组或者矩阵来看,无论哪种,array都没有配备相应的向量,用以对其进行相应的计算 numpy.array保存的是int32位整形(为啥我看别人是int64位) 因此即使输入…
numpy的基础运算中还有很多运算,我们这里再记录一些. 最小/大值索引 前面一篇博文中我们讲述过如何获得数组中的最小值,这里我们获得最小/大值的索引值,也就是这个最小/大值在整个数组中位于第几位. import numpy as np a = np.array([[10, 30, 15], [20, 5, 25]]) print("a=") print(a) print("最小值索引:", a.argmin()) print("最大值索引:",…
Python Numpy shape 基础用法 shape函数是numpy.core.fromnumeric中的函数,它的功能是读取矩阵的长度,比如shape[0]就是读取矩阵第一维度的长度.它的输入参数可以使一个整数表示维度,也可以是一个矩阵.这么说你可能不太理解,我们还是用各种例子来说明他的用法: 一维矩阵[1]返回值为(1L,) 二维矩阵,返回两个值 一个单独的数字,返回值为空 我们还可以将shape作为矩阵的方法来调用,下面先创建了一个单位矩阵e 我们可以快速读取e的形状 假如我们只想读…
In [41]: a=[1,2,3,4,5,5,6,6,7,8,8,9,9] # list类型数组 In [42]: b=nu.mean(a) #调用numpy.mean方法计算数组元素的算术平均值 In [43]: b Out[43]: 5.615384615384615 In [44]: b=nu.var(a) # 调用numpy.var方法计算数组元素方差 In [45]: b Out[45]: 6.2366863905325447 In [46]: b=nu.diff(a) # diff…
[一]计算属性 模板内的表达式非常便利,但是设计它们的初衷是用于简单运算的.在模板中放入太多的逻辑会让模板过重且难以维护.例如: <div id="example"> {{ message.split('').reverse().join('') }} </div> 在这个地方,模板不再是简单的声明式逻辑.必须看一段时间才能意识到,这里是想要显示变量 message 的翻转字符串.想要在模板中多次引用此处的翻转字符串时,就会更加难以处理.所以,对于任何复杂逻辑,…
目录 第一章 numpy入门 1.2 numpy数组基础 1.2.1 数组的属性 1.2.2 数组的索引:获取单个元素 1.2.3 数组切片:获取子数组 1.2.4 数组的变形 1.2.5 数组的拼接和分裂 第一章 numpy入门 1.2 numpy数组基础 1.2.1 数组的属性 import numpy as np np.random.seed(0) x1 = np.random.randint(10,size=6) x2 = np.random.randint(10,size=(3,4))…
Numpy.frompyfunc()将计算单个值的函数转化为计算数组中每个元素的函数 不再通过遍历,对数组中的元素进行运算,利用frompyfunc()将计算单个值的函数转化为计算数组中每个元素的函数 下面是示例代码: # -*- coding: utf-8 -*- """ Created on Fri Nov 20 17:18:11 2020 @author: pan """ import time import numpy as np arr…
转自:http://blog.csdn.net/pipisorry/article/details/45563695 http://blog.csdn.net/pipisorry/article/details/39087583 在介绍工具之前先对理论基础进行必要的回顾是很必要的.没有理论的基础,讲再多的应用都是空中楼阁.本文主要设涉及线性代数和矩阵论的基本内容.先回顾这部分理论基础,然后给出MATLAB,继而给出Python的处理.个人感觉,因为Python是面向对象的,操纵起来会更接近人的正…