线性回顾-generalize issue】的更多相关文章

Ein的平均,Eout的平均 用这个平均来justify linear regresssion能够用的很好 noise level 资料里有多少的杂讯 等一下要证明的事情 predictions + dagger hat矩阵 为什么叫hat矩阵? y 乘上hat矩阵就加上了一个帽子 统计的人取得名字 hat矩阵用来做什么呢? y是在N为空间里的向量,y投影到X张成的空间.把X的column做线性组合. 我们希望y和yhat的差别越小越好. y-y^垂直于x张成的空间 I-H求余数 H投影 tra…
1.简单介绍 线性回归方法可以有效的拟合所有样本点(局部加权线性回归除外).当数据拥有众多特征并且特征之间关系十分复杂时,构建全局模型的想法一个是困难一个是笨拙.此外,实际中很多问题为非线性的,例如常见到的分段函数,不可能用全局线性模型来进行拟合. 树回归将数据集切分成多份易建模的数据,然后利用线性回归进行建模和拟合.这里介绍较为经典的树回归CART(classification and regression trees,分类回归树)算法. 2.分类回归树基本流程 构建树: 1.找到[最佳待切分…
1. 动机一:数据压缩 第二种类型的 无监督学习问题,称为 降维.有几个不同的的原因使你可能想要做降维.一是数据压缩,数据压缩不仅允许我们压缩数据,因而使用较少的计算机内存或磁盘空间,但它也让我们加快我们的学习算法. 但首先,让我们谈论 降维是什么.作为一种生动的例子,我们收集的数据集,有许多,许多特征,我绘制两个在这里. 将数据从二维降一维: 将数据从三维降至二维: 这个例子中我们要将一个三维的特征向量降至一个二维的特征向量.过程是与上面类似的,我们将三维向量投射到一个二维的平面上,强迫使得所…
十三.聚类(Clustering) 13.1 无监督学习:简介 13.2 K-均值算法 13.3 优化目标 13.4 随机初始化 13.5 选择聚类数 十四.降维(Dimensionality Reduction) 14.1 动机一:数据压缩 14.2 动机二:数据可视化 14.3 主成分分析问题 14.4 主成分分析算法 14.5 选择主成分的数量 14.6 重建的压缩表示 14.7 主成分分析法的应用建议 第8周 十三.聚类(Clustering) 13.1 无监督学习:简介 参考视频: 1…
原文地址:https://xobo.org/spring-boot-apollo-dubbo-xml-error/ 某Spring Boot项目接入 apollo 后启动 dubbo 报错Caused by: java.lang.IllegalStateException: ApplicationConfig.application == null. 根据异常猜测是 dubbo 启动时未读取到 apollo 内的配置. 解决方法 apollo-client 升到 1.2.0 之后,然后在appl…
在本次实验中我们将使用PaddlePaddle来搭建一个简单的线性回归模型,并利用这一模型预测你的储蓄(在某地区)可以购买多大面积的房子.并且在学习模型搭建的过程中,了解到机器学习的若干重要概念,掌握一个机器学习预测的基本流程. 线性回归的基本概念 线性回归是机器学习中最简单也是最重要的模型之一,其模型建立遵循此流程:获取数据.数据预处理.训练模型.应用模型. 回归模型可以理解为:存在一个点集,用一条曲线去拟合它分布的过程.如果拟合曲线是一条直线,则称为线性回归.如果是一条二次曲线,则被称为二次…
import java.util.Scanner; public class ArrayDemo { public static void main(String []args) { //------------------------------------------------------- //线性查找 int [] num ={10,20,30,40,50}; Scanner input1 = new Scanner(System.in); System.out.println("请输…
主讲人 planktonli planktonli(1027753147) 18:58:12  大家好,我负责给大家讲讲 PRML的第3讲 linear regression的内容,请大家多多指教,群主让我们每个主讲人介绍下自己,赫赫,我也说两句,我是 applied mathematics + computer science的,有问题大家可以直接指出,互相学习.大家有兴趣的话可以看看我的博客: http://t.qq.com/keepuphero/mine,当然我给大家推荐一个好朋友的,他对…
转自 http://blog.csdn.net/han_xiaoyang/article/details/51629242 斯坦福大学CS224d基础1:线性代数知识 作者:Zico Kolter (补充: Chuong Do) 时间:2016年6月 翻译:@MOLLY(mollyecla@gmail.com) @OWEN(owenj1989@126.com) 校正:@寒小阳(hanxiaoyang.ml@gmail.com) @龙心尘(johnnygong.ml@gmail.com)  出处:…
1. 问题 之前我们讨论的PCA.ICA也好,对样本数据来言,可以是没有类别标签y的.回想我们做回归时,如果特征太多,那么会产生不相关特征引入.过度拟合等问题.我们可以使用PCA来降维,但PCA没有将类别标签考虑进去,属于无监督的. 比如回到上次提出的文档中含有“learn”和“study”的问题,使用PCA后,也许可以将这两个特征合并为一个,降了维度.但假设我们的类别标签y是判断这篇文章的topic是不是有关学习方面的.那么这两个特征对y几乎没什么影响,完全可以去除. 再举一个例子,假设我们对…