基于之前章节的铺垫,我们这里能够很容易的引出特征向量和特征值的概念. 首先我们知道n x n矩阵的A和n维向量v的乘积会得到一个n维的向量,那么现在我们发现,经过计算u=Av,得到的向量u是和v共线的,就是说向量v乘以矩阵A得到的向量u相对于向量v“拉伸”了,即满足如下的一个式子: Av =λv=u 那么这里我们称λ是矩阵A的特征值,v是对应特征值的特征向量. 严谨定义如下: 定理1: 三角矩阵的主对角线的元素是其特征值. 在证明之前,我们首先需要对定义做更充分的挖掘,特征向量x不能是零向量,我…
两个定理非常的简单显然,似乎是在证明矩阵代数中的基本运算律.但是它为后面用“线性变换”理解矩阵-向量积Ax奠定了理论基础. 结合之前我们讨论过的矩阵和向量的积Ax的性质,下面我们就可以引入线性变换了. 由于矩阵A和向量x的乘积的性质与线性变换的定义有着密切的联系,我们能够进一步的探索矩阵A在线性变换中扮演着怎样的角色. 有了线性变换和标准矩阵的概念,我们就有了强有力的工具用来表示实际问题中一系列诸如拉伸.伸缩的线性变换了.…
在线性代数中一个非常重要的概念就是向量空间R^n,这一章节将主要讨论向量空间的一系列性质. 一个向量空间是一些向量元素构成的非空集合V,需要满足如下公理: 向量空间V的子空间H需要满足如下三个条件: 两个定理均在阐述如何构成子空间,其证明也只需要简单的证明构造出的子空间满足子空间H需要满足的三个条件即可.…
最小二乘问题: 结合之前给出向量空间中的正交.子空间W.正交投影.正交分解定理.最佳逼近原理,这里就可以比较圆满的解决最小二乘问题了. 首先我们得说明一下问题本身,就是在生产实践过程中,对于巨型线性方程组Ax=b,可能是无解的,但是我们就是迫切的需要一个解,满足这个解是方程的最近似解. 下面我们综合之前给出了一系列概念.定理,来解决这个问题. 首先我们需要给出最近似解的定义: 我们需要站在新的角度来解读线性方程组Ax=b,这样能够帮助我们更好的解决问题. 上文已经给出最小二乘问题最一般化的解法,…
构造R^n子空间W一组正交基的算法:格拉姆-施密特方法.…
这一章节我们主要讨论定义在R^n空间上的向量之间的关系,而这个关系概括来讲其实就是正交,然后引入正交投影.最佳逼近定理等,这些概念将为我们在求无解的线性方程组Ax=b的最优近似解打下基石. 正交性: 先举个最简单的例子,在平面中,两个二维向量的点乘如果为0,那么我们可判定两个向量互相垂直,那么实际上这两个向量就是R^2向量空间上的一组正交向量. 下面推广到R^n向量空间上,给出正交性的定义: 正交集: 给定向量集合S,当S中任意两个元素都相互正交,我们称S是一个正交集. 基的一个概念其实表征一个…
计算线性方程组唯一解的克拉默法则:…
承接上一篇文章对行列式的引入,这篇文章将进一步记录关于行列式的有关内容,包括如下的几个方面: (1)行列式3个初等变换的证明. (2)转置行列式与原行列式相等的证明. (3)定理det(AB) = det(A)det(B)的证明. (4)基于行列式初等变换的范德蒙德行列式的证明. 首先值得说明的是,先前我们介绍矩阵的时候,并没有给出矩阵行变换的相关证明,其实按道理讲它的根源是出自于这里的.行列式和矩阵是有着紧密的联系的,想在这本书中就是基于矩阵的方法来完成对行列式3个初等变换的证明的. 行列式3…
这一章节开始介绍线性代数中另外一个基本概念——行列式. 其实与矩阵类似,行列式也是作为简化表述多项式的一种工具,关于行列式的历史渊源,有如下的介绍. 在介绍逆矩阵的时候,我们曾提及二阶矩阵有一个基于矩阵A对应行列式|A|和伴随矩阵的计算方法,当时由于没有引入行列式就暂且搁置,今天在这里将给出详细的证明过程. 关于行列式.伴随矩阵以及余子式.代数余子式等基本概念,这里不做累述. 另外由于MathType编辑器的符号所限,这里将证明过程手写在黑板上然后拍下图片. 值得注意的是,这种基于矩阵对应行列式…
分块矩阵的概念: 在矩阵的实际应用中,为了形式的更加简化我们将一个较大的矩阵的内部进行一定的划分,使之成为几个小矩阵,然后在表大矩阵的时候,矩阵的内部元素就用小矩阵代替. 进行了这一步简化,我们就要分块后的矩阵满足怎样的运算规律. 分块矩阵的运算: 分块矩阵的标量加减:很容易想到,只要大矩阵的维度相同,划分方法相同,两个分块矩阵的加减就是对应小矩阵的加减. 分块矩阵的乘法:其实在引出矩阵乘法的时候,我们就能够提供这样一种观点,基于自然的矩阵(列向量的表示形式)和R^n向量的乘法,我们将这里的R^…
矩阵的逆: 逆矩阵的定义: 类比于我们在研究实数的时候回去讨论一个数的倒数,对应的,在矩阵运算中,当AB = I的时候,A,B互称为逆矩阵,这里的I类似实数中的1,表示单位矩阵,即对角线是1其余位置是0的n x n的矩阵. 逆矩阵的唯一性: 逆矩阵是像实数的倒数一样唯一存在的么?我们不妨简单地证明一下.假设A的两个逆矩阵是B,C.根据定义我们有AB=I,AC=I,结合基本的矩阵运算法则,容易看到B=C=IA^-1,由此能够看到逆矩阵是唯一存在的. 或者我们可以从代数系统的角度去审视矩阵及其运算,…
之前我们曾经提及,完成了线性方程组-向量方程-矩阵方程的等价转化之后,我们对于现实问题中的线性方程组,只需将其转移到矩阵(向量)方程,然后利用矩阵代数中的各种方法和性质进行计算或者化简即可,而下面我们就去着力探讨矩阵代数. 需要在一开始就点到的是,无论是矩阵的加法还是乘法,我们都强调有定义,这个再具体的论述中不再强调. 和与标量乘法: 这一系列性质很直观,证明略去. 矩阵乘法: 因此我们就可以很自然的引出下面的结论:…
这篇文章主要简单的记录所谓的“线性相关性”. 线性相关性的对象是向量R^n,对于向量方程,如果说x1v1 + x2v2 + …+xmvm = 0(其中xi是常数,vi是向量)有且仅有一个平凡解,那么我们称m个向量组成的集合{v1,v2,v3…vm}是一个线性无关集,反之,则称向量集合{v1,v2,v3,…vm}是线性相关的. 这个定义似乎显得有些唐突,我们反过来理解所谓的“线性相关”,即在一组非零解的情况下,我们将某个一个系数xi不为0的向量移到等式的另一侧,从这种形式来看,我们得到了向量vi关…
向量: 向量的基本运算:向量的运算最基本的一件事情,就是基于它n个分量上进行,即对于两个分量的向量a = <a1,a2>,b = <b1,b2>,有a + b = <a1+b1,a2+b2>.聪明的读者可能已经想到了,这其实是与我们在高中物理的力学中所谓的“正交分解”是相互呼应的,而其实也是基于此,我们能够得到我们熟悉的所谓“平行四边形法则”.“三角形法则”. 更全面的向量的代数性质,下表给出. 向量方程: 我们进行进一步的转化. 可以看到,解向量方程的过程本质上回到了…
Linear algebra 1.模块文档 NAME numpy.linalg DESCRIPTION Core Linear Algebra Tools ------------------------- Linear algebra basics: - norm Vector or matrix norm - inv Inverse of a square matrix - solve Solve a linear system of equations - det Determinant…
搞统计的线性代数和概率论必须精通,最好要能锻炼出直觉,再学机器学习才会事半功倍. 线性代数只推荐Prof. Gilbert Strang的MIT课程,有视频,有教材,有习题,有考试,一套学下来基本就入门了. 不多,一共10次课. 链接:https://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/calendar/ SES # TOPICS KEY DATES 1 The geometry of linear e…
Here’s just a fraction of what you can do with linear algebra The next time someone wonders what the point of linear algebra is, send them here. I write a blog on math and programming and I see linear algebra applied to computer science all the time.…
Abstract: 通过学习MIT 18.06课程,总结出的线性代数的知识点相互依赖关系,后续博客将会按照相应的依赖关系进行介绍.(2017-08-18 16:28:36) Keywords: Linear Algebra,Big Picture 开篇废话 废话不多说,网易公开课有MIT 18.06的课程翻译,MIT OCW提供相关练习,如有需要都可以进行下载. Gilbert Strang教授的讲授能够让大多数人入门,掌握这门课的大部分内容. 本课程教材使用的也是professor Stran…
前言 MATLAB一向是理工科学生的必备神器,但随着中美贸易冲突的一再升级,禁售与禁用的阴云也持续笼罩在高等学院的头顶.也许我们都应当考虑更多的途径,来辅助我们的学习和研究工作. 虽然PYTHON和众多模块也属于美国技术的范围,但开源软件的自由度毕竟不是商业软件可比拟的. 本文是一篇入门性文章,以麻省理工学院(MIT) 18.06版本线性代数课程为例,按照学习顺序介绍PYTHON在代数运算中的基本应用. 介绍PYTHON代数计算的文章非常多,但通常都是按照模块作为划分顺序,在实际应用中仍然有较多…
Linear Algebra Learning From Data 1.1 Multiplication Ax Using Columns of A 有关于矩阵乘法的理解深入 矩阵乘法理解为左侧有是一个向量集合,都是由列向量组成的,随后右侧则是一个待变换的向量,当这个向量作用于这个向量组之后等效于在这个向量组为基底进行了换底操作,这样就从原来的单位向量基底换到了这个新的向量基底. 向量空间理解 向量空间的理解: 所有的向量组都表示着一个向量空间,而这个向量空间是只能描述比这个向量底的维度,所有的…
Professor: Gilbert Strang Text: Introduction to Linear Algebra http://web.mit.edu/18.06   Lecture 1 contents: n linear equation, n unknowns Row picture & Column picture Matrix form   引入方程组 可表示为AX=b的形式,为: 从几何意义上理解,每个方程表示一条直线,两条直线相交于一点,即为方程组的解.以列的形式可以写…
调试DeepFlow光流算法,由于作者给出的算法是基于Linux系统的,所以要在Windows上运行,不得不做大量的修改工作.移植到Windows平台,除了一些头文件找不到外,还有一些函数也找不到.这其中就涉及到三个函数:sgemv_,sgemm­,saxpy­_.百度了一下,原来这三个函数是很有来头的.它们仨来自于Basic Linear Algebra Subprograms(BLAS),即基础线性代数子程序库.这个库其实就是关于向量和矩阵之间的运算的. BLAS维百介绍:https://e…
http://acm.uestc.edu.cn/#/problem/show/793 A Linear Algebra Problem Time Limit: 3000/1000MS (Java/Others)     Memory Limit: 65535/65535KB (Java/Others) Submit Status God Kufeng is the God of Math. However, Kufeng is not so skilled with linear algebra…
非叫“秩”不可,有秩才有解_王治祥_新浪博客http://blog.sina.com.cn/s/blog_8e7bc4f801012c23.html 我在一个大学当督导的时候,一次我听一位老师给学生讲<线性代数>中矩阵的“秩”. 矩阵的“秩”是<线性代数>中的一个非常重要的概念.我认为,理解了“秩”,线性代数就好学多了,用起来也主动多了. 因为这个概念的重要性,课间休息时,我问这位老师:“秩”是什么?为什么非要叫“秩”? 对前一个问题,他又重复了一遍教科书上的数学定义.对后一个问题…
转眼间我的学士学位修读生涯已经快要到期了,重读线性代数,一是为了重新理解Algebra的的重要概念以祭奠大一刷过的计算题,二是为了将来的学术工作先打下一点点(薄弱的)基础.数学毫无疑问是指导着的科研方向与科学发展,即使是同一本数学书,每次翻阅也能读出不同的内涵.享受不同的乐趣. P1-149 Strang在书的序言便给出了linear algebra的研究对象,一切的来源便在于Ax=b这个方程组.虽然从向量矩阵.线性方程组到向量空间.线性变换,费了好大劲才将任意一个线性变化凝练到一个矩阵上,但对…
B. Linear Algebra Test   time limit per test 3.0 s memory limit per test 256 MB input standard input output standard output Dr. Wail is preparing for today's test in linear algebra course. The test's subject is Matrices Multiplication. Dr. Wail has n…
B. Linear Algebra Test time limit per test 3.0 s memory limit per test 256 MB input standard input output standard output Dr. Wail is preparing for today's test in linear algebra course. The test's subject is Matrices Multiplication. Dr. Wail has n m…
题面 出题人:T L Y \tt TLY TLY 太阳神:Tiw_Air_OAO 「 2020 - 2021 集 训 队 作 业 」 Y e t A n o t h e r L i n e a r A l g e b r a P r o b l e m 传 统 1000   m s 512   M i B {\tt「2020-2021~集训队作业」Yet~Another~Linear~Algebra~Problem}\\\\ {\tt_{传统~~~~~1000\,ms~~~~~512\,MiB}…
[前言] 对于矩阵(Matrix)的特征值(Eigens)求解,采用数值分析(Number Analysis)的方法有一些,我熟知的是针对实对称矩阵(Real Symmetric Matrix)的特征值和特征向量(Characteristic Vectors)求解算法——雅克比算法(Jacobi).Jacobi算法的原理和实现可以参考[https://blog.csdn.net/zhouxuguang236/article/details/40212143].通过Jacobi算法可以以任意精度近…
#include <stdio.h> #include <math.h> #include <stdlib.h> #define M 3 //方阵的行数 列数 #define ε0 0.00000001//ε0为要求的精度 #define N 100000//最大迭代次数 //函数预声明 ], int m, int n);//矩阵的打印 void printVector(double a[], int m);//向量的打印 double dotVector(double…