首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
BZOJ2818: Gcd 莫比乌斯反演
】的更多相关文章
BZOJ2818: Gcd 莫比乌斯反演
分析:筛素数,然后枚举,莫比乌斯反演,然后关键就是分块加速(分块加速在上一篇文章) #include<cstdio> #include<cstring> #include<queue> #include<cstdlib> #include<algorithm> #include<vector> #include<cmath> using namespace std; typedef long long LL; ; cons…
[BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块)
[BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块) 题面 给定N, M,求\(1\leq x\leq N, 1\leq y\leq M\)且gcd(x, y)为质数的(x, y)有多少对.q组询问 分析 我们要求的是 \[\sum_{p \in P} \sum_{i=1}^n \sum_{j=1}^m [gcd(i,j)=p]\](大写P表示质数集合) 根据\(kgcd(i,j)=gcd(ki,kj)\), \[原式=\sum_{p \in P} \sum_{i=1}^{\lfloo…
【BZOJ2818】Gcd [莫比乌斯反演]
Gcd Time Limit: 10 Sec Memory Limit: 256 MB[Submit][Status][Discuss] Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的 数对(x,y)有多少对. Input 一个整数N Output 如题 Sample Input 4 Sample Output 4 HINT 1<=N<=10^7 Solution 直接莫比乌斯反演即可. 然后对于这个式子,我们下界分块一下即可. Code #i…
HDU1695 GCD(莫比乌斯反演)
传送门 看了1个多小时,终于懂了一点了 题目大意:给n,m,k.求gcd(x,y) = k(1<=x<=n, 1<=y<=m)的个数 思路:令F(i)表示i|gcd(x,y)的(x,y)的对数,显然F(x)=[nx]∗[mx]. 设f(x)为gcd(x,y)=x的对数. 因为F(x)=∑i|xf(i),所以我们可以莫比乌斯反演它. 根据公式f(x)=∑x|dμ(d)F(d) 我们的目标就是f(1)(因为n和m都可以除以k) 所以我们就可以在O(n)的时间复杂度内求出答案了. #in…
hdu 1695 GCD 莫比乌斯反演入门
GCD 题意:输入5个数a,b,c,d,k;(a = c = 1, 0 < b,d,k <= 100000);问有多少对a <= p <= b, c <= q <= d使得gcd(p,q) = k; 注:对于(p,q)和(q,p)只算一次: 思路:由于遍历朴素求两个数的gcd的时间复杂度为O(n^2*log(n)),朴素算法遍历搜索在判断累加,所以效率很低: 资料 NanoApe's Blog ACdreamers 莫比乌斯反演:利用整与分之间的可逆来由整体利用…
洛谷P2257 YY的GCD 莫比乌斯反演
原题链接 差不多算自己推出来的第一道题QwQ 题目大意 \(T\)组询问,每次问你\(1\leqslant x\leqslant N\),\(1\leqslant y\leqslant M\)中有多少\((x,y)\)满足\(gcd(x,y)\in \mathbb{P}\) 数据范围 \(T=10000\),\(1\leqslant N,M\leqslant 10000000\) 显然,暴力不可做. 这种公约数计数的题貌似大多都是用莫比乌斯反演做的?套路啊,套路. 首先,我们先很套路地设一个函数…
HYSBZ - 2818 Gcd (莫比乌斯反演)
莫比乌斯反演的入门题,设 \(F(x): gcd(i,j)\%x=0\) 的对数,\(f(x): gcd(i,j)=x\)的对数. 易知\[F(p) = \lfloor \frac{n}{p} \rfloor * \lfloor \frac{n}{p} \rfloor\] \(F(x) = \sum_{x|d} f(d)\) 根据莫比乌斯反演得,\(f(x) = \sum_{x|d}u(\frac{d}{x})F(d)\) 所求的是\(gcd(i,j)\)为素数的对数,所以\(ans = \su…
Luogu P2257 YY的GCD 莫比乌斯反演
第一道莫比乌斯反演...$qwq$ 设$f(d)=\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)==d]$ $F(n)=\sum_{n|d}f(d)=\lfloor \frac{N}{n} \rfloor \lfloor \frac{M}{n} \rfloor$ $f(n)=\sum_{n|d}\mu(\frac{d}{n})F(d)$ $ans=\sum_{p\in pri}f(p)$ $=\sum_{p\in pri}\sum_{p|d}\mu(\frac{d}{p})F…
BZOJ 2818 Gcd (莫比乌斯反演 或 欧拉函数)
2818: Gcd Time Limit: 10 Sec Memory Limit: 256 MB Submit: 2534 Solved: 1129 [Submit][Status][Discuss] Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的 数对(x,y)有多少对. Input 一个整数N Output 如题 Sample Input 4 Sample Output 4 HINT hint 对于例子(2,2),(2,4),(3,3),(4,2)…
BZOJ 2820 luogu 2257 yy的gcd (莫比乌斯反演)
题目大意:求$gcd(i,j)==k,i\in[1,n],j\in[1,m] ,k\in prime,n,m<=10^{7}$的有序数对个数,不超过10^{4}次询问 莫比乌斯反演入门题 为方便表述,由于n和m等价,以下内容均默认n<=m 题目让我们求:$\sum_{k=1}^{n}\sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)==k]$ 容易变形为:$\sum_{k=1}^{n}\sum_{i=1}^{\left \lfloor \frac{n}{k} \righ…