据预处理是总称,涵盖了数据分析师使用它将数据转处理成想要的数据的一系列操作.例如,对某个网站进行分析的时候,可能会去掉 html 标签,空格,缩进以及提取相关关键字.分析空间数据的时候,一般会把带单位(米.千米)的数据转换为“单元性数据”,这样,在算法的时候,就不需要考虑具体的单位.数据预处理不是凭空想象出来的.换句话说,预处理是达到某种目的的手段,并且没有硬性规则,一般会跟根据个人经验会形成一套预处理的模型,预处理一般是整个结果流程中的一个环节,并且预处理的结果好坏需要放到到整个流程中再进行评…
上次我们使用精度评估得到的成绩是 61%,成绩并不理想,再使 recall 和 f1 看下成绩如何? 首先我们先了解一下 召回率和 f1. 真实结果 预测结果 预测结果   正例 反例 正例 TP 真正例 FN 假反例 反例 FP 假正例 TN 真反例 召回率:TP/(TP+FN) f1:2TP/(2TP+FN+FP) 我们使用scikit-learn的分类报告来查看各种其他指标: 现在我们来介绍一下缩放和中心化,他们是预处理数值数据最基本的方法,接下来,看看它们是否对模型有影响,以及怎样的影响…
1 数据无量纲化 在机器学习算法实践中,我们往往有着将不同规格的数据转换到同一规格,或不同分布的数据转换到某个特定分布的需求,这种需求统称为将数据“无量纲化”.譬如梯度和矩阵为核心的算法中,譬如逻辑回归,支持向量机,神经网络,无量纲化可以加快求解速度:而在距离类模型,譬如K近邻,K-Means聚类中, 无量纲化可以帮我们提升模型精度,避免某一个取值范围特别大的特征对距离计算造成影响.(一个特例是决策树和树的集成算法们,对决策树我们不需要无量纲化,决策树可以把任意数据都处理得很好.) 数据的无量纲…
背景 背景是设计一个实时数据接入的模块,负责接收client的实时数据写入(如日志流,点击流),数据支持直接下沉到HBase上(兴许提供HBase上的查询),或先持久化到Kafka里.方便兴许进行一些计算和处理,再下沉到文件系统或做别的输出. 在设计中,对于client和服务端有这么些目标. client须要支持多语言(Java.C++),做得尽量轻量级.仅仅要连上服务端的ip:port.以RPC的形式调用简单的write就能够把数据写出去.client不承担不论什么逻辑的处理.服务端的负载均衡…
注:本文是人工智能研究网的学习笔记 规范化(Normalization) Normalization: scaling individual to have unit norm 规范化是指,将单个的样本特征向量变换成具有单位长度(unit norm)的特征向量的过程.当你要使用二次形式(quadratic from)如点积或核变换运算来度量任意一堆样本的相似性的时候,数据的规范化会非常的有用 假定是基于向量空间模型,经常被用于文本分类和内容的聚类. 函数normalize提供了快速简单的方法使用…
任何国家都无法限制数字货币.为什么呢? 要想明白这个问题需要具备一点区块链的基础知识: 区块链使用的大致技术包括以下几种: a.点对点网络设计 b.加密技术应用  c.分布式算法的实现 d.数据存储技术 e.拜占庭算法 f.权益证明POW,POS,DPOS 原因一: 点对点网络设计 其中点对点的P2P网络是bittorent ,由于是点对点的网络,没有中心化,因此在全球分布式的网络里,如果中国的结点挂掉了,还有美国的,英国的,日本的,甚至不小不点的某个非洲国家,都有全网数据与账本的热备. 原因二…
1 标准化 & 归一化 导包和数据 import numpy as np from sklearn import preprocessing data = np.loadtxt('data.txt', delimiter='\t') 1.1 标准化 (Z-Score) x'=(x-mean)/std 原转换的数据为x,新数据为x′,mean和std为x所在列的均值和标准差 标准化之后的数据是以0为均值,方差为1的正态分布. 但是Z-Score方法是一种中心化方法,会改变原有数据的分布结构,不适合…
处理连续性特征 二值化与分段 sklearn.preprocessing.Binarizer根据阈值将数据二值化(将特征值设置为0或1),用于处理连续型变量.大于阈值的值映射为1,而小于或等于阈值的值映射为0.默认阈值为0时,特征中所有的正值都映射到1.二值化是对文本计数数据的常见操作,分析人员可以决定仅考虑某种现象的存在与否.它还可以用作考虑布尔随机变量的估计器的预处理步骤(例如,使用贝叶斯设置中的伯努利分布建模). #将年龄二值化 data_2 = data.copy() from skle…
机器学习实战 一书中第20页数据预处理,从文本中解析数据的程序. import numpy as np def dataPreProcessing(fileName): with open(fileName) as op: lines=op.readlines() # 返回值是list lineNumer=len(lines) # list长度即文件中的行数 dataMatrix=np.zeros((lineNumer,3)) # 初始化lineNumer行,3列的全0矩阵,注意双层括号 lab…
http://blog.csdn.net/pipisorry/article/details/52247679 本blog内容有标准化.数据最大最小缩放处理.正则化.特征二值化和数据缺失值处理. 基础知识参考 [数据标准化/归一化normalization] [均值.方差与协方差矩阵] [矩阵论:向量范数和矩阵范数] Note: 一定要注意归一化是归一化什么,归一化features还是samples. 数据标准化:去除均值和方差进行缩放 Standardization: mean removal…
数据预处理是指因为算法或者分析需要,对经过数据质量检查后的数据进行转换.衍生.规约等操作的过程.整个数据预处理工作主要包括五个方面内容:简单函数变换.标准化.衍生虚拟变量.离散化.降维.本文将作展开介绍,并提供基于Python的代码实现. 1. 简单函数变换 简单函数变换是指对原始数据直接使用某些数学函数进行转换,主要用于将不具有正态分布的数据变换成具有正态分布,同时也可以用于对数据进行压缩,比如\(10^8和10^9\)更关注的是相对差距而不是绝对差距,可以通过取对数变换实现. 常用的函数包括…
数据预处理 标准化 (Standardization) 规范化(Normalization) 二值化 分类特征编码 推定缺失数据 生成多项式特征 定制转换器 1. 标准化Standardization(这里指移除均值和方差标准化) 标准化是很多数据分析问题的一个重要步骤,也是很多利用机器学习算法进行数据处理的必要步骤. 1.1 z-score标准化 z-score标准化指的是将数据转化成均值为0方差为1的高斯分布,也就是通常说的z-score标准化,但是对于不服从标准正态分布的特征,这样做效果会…
1 概念   归一化:1)把数据变成(0,1)或者(1,1)之间的小数.主要是为了数据处理方便提出来的,把数据映射到0-1范围之内处理,更加便捷快速.2)把有量纲表达式变成无量纲表达式,便于不同单位或量级的指标能够进行比较和加权.归一化是一种简化计算的方式,即将有量纲的表达式,经过变换,化为无量纲的表达式,成为纯量.   标准化:在机器学习中,我们可能要处理不同种类的资料,例如,音讯和图片上的像素值,这些资料可能是高维度的,资料标准化后会使每个特征中的数值平均变为0(将每个特征的值都减掉原始资料…
注:本文是人工智能研究网的学习笔记 常用的数据预处理方式 Standardization, or mean removal and variance scaling Normalization: scaling individual to have unit norm Binarization: thresholding numerical features to get boolean values Encoding categorical feature Imputation of miss…
https://blog.csdn.net/zhangyang10d/article/details/53418227 数据预处理 sklearn.preprocessing 标准化 (Standardization) 规范化(Normalization) 二值化 分类特征编码 推定缺失数据 生成多项式特征 定制转换器 1. 标准化Standardization(这里指移除均值和方差标准化) 标准化是很多数据分析问题的一个重要步骤,也是很多利用机器学习算法进行数据处理的必要步骤. 1.1 z-s…
本篇文章主要简单介绍sklearn中的数据预处理preprocessing模块,它可以对数据进行标准化.preprocessing 模块提供了数据预处理函数和预处理类,预处理类主要是为了方便添加到pipeline 过程中. 以下内容包含了一些个人观点和理解,如有疏漏或错误,欢迎补充和指出. 数据标准化 数据标准化:当单个特征的样本取值相差甚大或明显不遵从高斯正态分布时,标准化表现的效果较差.实际操作中,经常忽略特征数据的分布形状,移除每个特征均值,划分离散特征的标准差,从而等级化,进而实现数据中…
1.标准化(中心化) 在许多机器学习执行前,需要对数据集进行标准化处理.因为很对算法假设数据的特征服从标准正态分布.所以如果不对数据标准化,那么算法的效果会很差. 例如,在学习算法的目标函数,都假设数据集的所有特征集中在0附近,并且有相同的方差.如果某个特征的方差远大于其他特征的方差,那么该特征可能在目标函数占的权重更大,使得算法不能从所有特征中学习. 在实践中,我们往往忽略了分布的形状,只需要通过减去每个特征的均值,然后除以非标准特征的标准偏差来转换数据. scale方法提供了在一个类似数据的…
小伙伴们大家好~o( ̄▽ ̄)ブ,沉寂了这么久我又出来啦,这次先不翻译优质的文章了,这次我们回到Python中的机器学习,看一下Sklearn中的数据预处理和特征工程,老规矩还是先强调一下我的开发环境是Jupyter lab,所用的库和版本大家参考: Python 3.7.1(你的版本至少要3.4以上) Scikit-learn 0.20.0 (你的版本至少要0.19) Numpy 1.15.3, Pandas 0.23.4, Matplotlib 3.0.1, SciPy 1.1.0 1 skl…
preprocessing 模块提供了数据预处理函数和预处理类,预处理类主要是为了方便添加到 pipeline 过程中. 数据标准化 标准化预处理函数: preprocessing.scale(X, axis=0, with_mean=True, with_std=True, copy=True): 将数据转化为标准正态分布(均值为0,方差为1) preprocessing.minmax_scale(X, feature_range=(0, 1), axis=0, copy=True): 将数据…
理论知识:UFLDL数据预处理和http://www.cnblogs.com/tornadomeet/archive/2013/04/20/3033149.html 数据预处理是深度学习中非常重要的一步!如果说原始数据的获得,是深度学习中最重要的一步,那么获得原始数据之后对它的预处理更是重要的一部分. 1.数据预处理的方法: ①数据归一化: 简单缩放:对数据的每一个维度的值进行重新调节,使其在 [0,1]或[ − 1,1] 的区间内 逐样本均值消减:在每个样本上减去数据的统计平均值,用于平稳的数…
数据预处理没有统一的标准,只能说是根据不同类型的分析数据和业务需求,在对数据特性做了充分的理解之后,再选择相关的数据预处理技术,一般会用到多种预处理技术,而且对每种处理之后的效果做些分析对比,这里面经验的成分比较大,即使是声称数据挖掘专家的人可能在某一个方面研究得很深入,但面对新的应用情况和数据,一开始他也不可能很有把握地说能挖掘出有价值的东西,数据挖掘这个术语原来也叫数据采矿,就好比采矿,需要耐心,需要经验,学要总结.其本身是一个综合学科:人工智能,机器学习,数据库,统计学等学科的大综合.个人…
一.standardization 之所以标准化的原因是,如果数据集中的某个特征的取值不服从标准的正太分布,则性能就会变得很差 ①函数scale提供了快速和简单的方法在单个数组形式的数据集上来执行标准化操作 from sklearn import preprocessing import numpy as np X=np.array([[1,-1,2], [2,0,0], [0,1,-1]]) X_scaled=preprocessing.scale(X) print(X_scaled) "&q…
数据标准化:当单个特征的样本取值相差甚大或明显不遵从高斯正态分布时,标准化表现的效果较差.实际操作中,经常忽略特征数据的分布形状,移除每个特征均值,划分离散特征的标准差,从而等级化,进而实现数据中心化. 一.标准化(Standardization),或者去除均值和方差进行缩放 公式为:(X-X_mean)/X_std 计算时对每个属性/每列分别进行. 将数据按其属性(按列进行)减去其均值,然后除以其方差.最后得到的结果是,对每个属性/每列来说所有数据都聚集在0附近,方差值为1. 首先说明下skl…
.caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px solid #000; } .table { border-collapse: collapse !important; } .table td, .table th { background-color: #fff !important; } .table-bordered th, .table-bordere…
原文:https://www.infoq.cn/article/principle-and-impleme-of-de-centering-system-in-serf serf 是出自 Hashicorp 的开源项目, 实现了去中心化的 gossip(八卦) 协议,其中 gossip 协议定义了一种类似病毒感染的消息传播过程. 一些著名的开源项目,如 Docker 和 Consul,网络管理和服务发现的核心组件是基于 serf 实现的,然而它们背后的 serf 似乎还鲜为人知,一方面其复杂的理…
博主学习的源头,感谢!https://www.jianshu.com/p/95a8f035c86c 归一化 (Normalization).标准化 (Standardization)和中心化/零均值化 (Zero-centered)归一化:1)把数据变成(0,1)或者(1,1)之间的小数.标准化:使每个特征中的数值平均变为0(将每个特征的值都减掉原始资料中该特征的平均).标准差变为1中心化:平均值为0,对标准差无要求归一化和标准化的区别:归一化是将样本的特征值转换到同一量纲下把数据映射到[0,1…
梯度中心化GC对权值梯度进行零均值化,能够使得网络的训练更加稳定,并且能提高网络的泛化能力,算法思路简单,论文的理论分析十分充分,能够很好地解释GC的作用原理   来源:晓飞的算法工程笔记 公众号 论文: Gradient Centralization: A New Optimization Technique for Deep Neural Networks 论文地址:https://arxiv.org/abs/2004.01461 论文代码:https://github.com/Yongho…
原文链接 简介 为发挥 SIMD1 的最大作用,除了对其进行矢量化处理2外,我们还需作出其他努力.可以尝试为循环添加 #pragma omp simd3,查看编译器是否成功进行矢量化,如果性能有所提升,则达到满意状态. 然而,可能性能根本不会提升,甚至还会降低. 无论处于何种情况,为了最大限度发挥 SIMD 执行的优势并实现性能提升,通常需要重新设计算法和数据布局,以便生成的 SIMD 代码尽可能高效. 另外还可收到额外的效果,即标量(非矢量化)版代码会表现得更好. 本文将通过一个 3D 动画算…
今天打算写写关于 IM 去中心化涉及的架构模型变化和设计思路,去中心化的概念就是说用户的访问不是集中在一个数据中心,这里的去中心是针对数据中心而言的. 站在这个角度而言,实际上并非所有的业务都能做去中心化设计,对于一致性要求越高的业务去中心化越难做.比如电商领域的库存就是一个对一致性要求很高的业务,不能超卖也不能少卖,这在单中心容易实现,但多中心纯从技术层面感觉无解,可能需要从业务和技术层面一起去做个折衷. 反过来看 IM 的业务场景是非常适合做去中心化设计的,因为其业务场景都是弱一致性需求.打…
★Tox是什么 一个反窥探的开源项目:一种基于DHT(BitTorrent)技术的即时通讯协议:一个为安全而生的加密通讯系统 .美国棱镜计划曝光后,一个名为 irungentoo 的牛人于17天后的2013年6月23日在Github上发起该项目,目标是为大众提供安全且便捷的沟通. ★ Tox有什么 [加密通讯]——每次会话都使用不同的密码加密,安全无忧,巧妙防破解 [去中心化]——没有服务器存储你的账户信息和会话内容,无从窥探,隐私有保障 [开源免费]——源代码可以自由获取.修改和审查,不用担心…